DOI QR코드

DOI QR Code

Cancer Stem Cells and Response to Therapy

  • Tabarestani, Sanaz (Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences) ;
  • Ghafouri-Fard, Soudeh (Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences)
  • Published : 2012.12.31

Abstract

The cancer stem cell (CSC) model states that cancers are organized in cellular hierarchies, which explains the functional heterogeneity often seen in tumors. Like normal tissue stem cells, CSCs are capable of self-renewal, either by symmetric or asymmetric cell division, and have the exclusive ability to reproduce malignant tumors indefinitely. Current systemic cancer therapies frequently fail to eliminate advanced tumors, which may be due to their inability to effectively target CSC populations. It has been shown that embryonic pathways such as Wnt, Hedgehog, and Notch control self-renewal and cell fate decisions of stem cells and progenitor cells. These are evolutionary conserved pathways, involved in CSC maintenance. Targeting these pathways may be effective in eradicating CSCs and preventing chemotherapy or radiotherapy resistance.

Keywords

Cancer stem cells;chemotherapy response;radiotherapy response;targeted therapy

References

  1. Ugolini F, Adelaide J, Charafe-Jauffret E, et al (1999). Differential expression assay of chromosome arm 8p genes identifies Frizzled-related (FRP1/FRZB) and Fibroblast Growth Factor Receptor 1 (FGFR1) as candidate breast cancer genes. Oncogene, 18, 1903-10. https://doi.org/10.1038/sj.onc.1202739
  2. Valent P, Bonnet D, De Maria R, et al (2012). Cancer stem cell definitions and terminology: the devil is in the details. Nature Reviews Cancer, 12, 767-75. https://doi.org/10.1038/nrc3368
  3. Varnat F, Duquet A, Malerba M, et al (2009). Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol Med, 1, 338-51. https://doi.org/10.1002/emmm.200900039
  4. Virmani AK, Rathi A, Sathyanarayana UG, et al (2001). Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas. Clin Cancer Res, 7, 1998-2004.
  5. Wang J, Wakeman TP, Lathia JD, et al (2010). Notch promotes radioresistance of glioma stem cells. Stem Cells, 28, 17-28.
  6. Wang Z, Li Y, Kong D, et al (2009). Acquisition of epithelialmesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res, 69, 2400-7. https://doi.org/10.1158/0008-5472.CAN-08-4312
  7. Watkins DN, Berman DM, Burkholder SG, et al (2003). Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature, 422, 313-7. https://doi.org/10.1038/nature01493
  8. Woodward WA, Chen MS, Behbod F, et al (2007). WNT/betacatenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci USA, 104, 618-23. https://doi.org/10.1073/pnas.0606599104
  9. Wulf GG, Wang RY, Kuehnle I, et al (2001). A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood, 98, 1166-73. https://doi.org/10.1182/blood.V98.4.1166
  10. Xie J, Murone M, Luoh SM, et al (1998). Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature, 391, 90-2. https://doi.org/10.1038/34201
  11. Yamada T, Takaoka AS, Naishiro Y, et al (2000). Transactivation of the multidrug resistance 1 gene by T-cell factor 4/betacatenin complex in early colorectal carcinogenesis. Cancer Res, 60, 4761-6.
  12. Yang ZF, Ho DW, Ng MN, et al (2008). Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell, 13, 153-66. https://doi.org/10.1016/j.ccr.2008.01.013
  13. Yao Z, Mishra L (2009). Cancer stem cells and hepatocellular carcinoma. Cancer Biol Ther, 8, 1691-8. https://doi.org/10.4161/cbt.8.18.9843
  14. Yilmaz OH, Valdez R, Theisen BK, et al (2006). Pten dependence distinguishes haematopoietic stem cells from leukaemiainitiating cells. Nature, 441, 475-82. https://doi.org/10.1038/nature04703
  15. Zechner D, Fujita Y, Hulsken J, et al (2003). beta-Catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Dev Biol, 258, 406-18. https://doi.org/10.1016/S0012-1606(03)00123-4
  16. Puc J, Keniry M, Li HS, et al (2005). Lack of PTEN sequesters CHK1 and initiates genetic instability. Cancer Cell, 7, 193-204. https://doi.org/10.1016/j.ccr.2005.01.009
  17. Reiman JM, Knutson KL, Radisky DC, et al (2010). Immune Promotion of Epithelial-mesenchymal Transition and Generation of Breast Cancer Stem Cells. Cancer Res, 70, 3005-8. https://doi.org/10.1158/0008-5472.CAN-09-4041
  18. Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al (2007). Identification and expansion of human colon-cancerinitiating cells. Nature, 445, 111-5. https://doi.org/10.1038/nature05384
  19. Riquelme PA, Drapeau E, Doetsch F, et al (2008). Brain microecologies: neural stem cell niches in the adult mammalian brain. Philos Trans R Soc Lond B Biol Sci, 363, 123-37. https://doi.org/10.1098/rstb.2006.2016
  20. Roh MS, Hong SH, Jeong JS, et al (2004). Gene expression profiling of breast cancers with emphasis of beta-catenin regulation. J Korean Med Sci, 19, 275-82. https://doi.org/10.3346/jkms.2004.19.2.275
  21. Rossi DJ, Bryder D, Seita J, et al (2007). Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature, 447, 725-9. https://doi.org/10.1038/nature05862
  22. Sato N, Meijer L, Skaltsounis L, et al (2004). Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med, 10, 55-63. https://doi.org/10.1038/nm979
  23. Schuller U, Heine V, Mao J, et al (2008). Acquisition of granule neuronprecursor identity is a critical determinant of progenitor cell compecompetence to form Shh-induced medulloblastoma. Cancer Cell, 14, 123-34. https://doi.org/10.1016/j.ccr.2008.07.005
  24. Sell S, Leffert HL (2008). Liver cancer stem cells. J Clin Oncol, 26, 2800-5. https://doi.org/10.1200/JCO.2007.15.5945
  25. Singh SK, Hawkins C, Clarke ID, et al (2004). Identification of human brain tumour initiating cells. Nature, 432, 396-401. https://doi.org/10.1038/nature03128
  26. Stecca B, Mas C, Clement V, et al (2007). Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc Natl Acad Sci USA, 104, 5895-900. https://doi.org/10.1073/pnas.0700776104
  27. Takahashi-Yanaga F, Kahn M (2010). Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res, 16, 3153-62. https://doi.org/10.1158/1078-0432.CCR-09-2943
  28. Takaishi S, Okumura T, Wang TC, et al (2008). Gastric cancer stem cells. J Clin Oncol, 26, 2876-82. https://doi.org/10.1200/JCO.2007.15.2603
  29. Takebe N, Ivy SP (2010). Controversies in cancer stem cells: targeting embryonic signaling pathways. Clin Cancer Res, 16, 3106-12. https://doi.org/10.1158/1078-0432.CCR-09-2934
  30. Taylor MD, Liu L, Raffel C, et al (2002). Mutations in SUFU predispose to medulloblastoma. Nat Genet, 31, 306-10. https://doi.org/10.1038/ng916
  31. Thun MJ, Henley SJ, Patrono C, et al (2002). Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst, 94, 252-66. https://doi.org/10.1093/jnci/94.4.252
  32. Todaro M, Alea MP, Di Stefano AB, et al (2007). Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell, 1, 389-402. https://doi.org/10.1016/j.stem.2007.08.001
  33. Todaro M, Lombardo Y, Francipane MG, et al (2008). Apoptosis resistance in epithelial tumors is mediated by tumor-cellderived interleukin-4. Cell Death Differ, 15, 762-72. https://doi.org/10.1038/sj.cdd.4402305
  34. Magnifico A, Albano L, Campaner S, et al (2009). Tumorinitiating cells of HER2-positive carcinoma cell lines express the highest oncoprotein levels and are sensitive to trastuzumab. Clin Cancer Res, 15, 2010-21. https://doi.org/10.1158/1078-0432.CCR-08-1327
  35. Mani SA, Guo W, Liao MJ, et al (2008). The epithelialmesenchymal transition generates cells with properties of stem cells. Cell, 133, 704-15. https://doi.org/10.1016/j.cell.2008.03.027
  36. Maugeri-Sacca M, Vigneri P, De Maria R, et al (2011). Cancer stem cells and chemosensitivity. Clin Cancer Res, 17, 4942-7. https://doi.org/10.1158/1078-0432.CCR-10-2538
  37. Maynard S, Swistowska AM, Lee JW, et al (2008). Human embryonic stem cells have enhanced repair of multiple forms of DNA damage. Stem Cells, 26, 2266-74. https://doi.org/10.1634/stemcells.2007-1041
  38. Merchant AA, Matsui W (2010). Targeting hedgehog--a cancer stem cell pathway. Clin Cancer Res, 16, 3130-40. https://doi.org/10.1158/1078-0432.CCR-09-2846
  39. Moeller BJ, Dreher MR, Rabbani ZN, et al (2005). Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell, 8, 99-110. https://doi.org/10.1016/j.ccr.2005.06.016
  40. Moitra K, Lou H, Dean M, et al (2011). Multidrug efflux pumps and cancer stem cells: insights into multidrug resistance and therapeutic development. Clin Pharmacol Ther, 89, 491-502. https://doi.org/10.1038/clpt.2011.14
  41. Nagahata T, Shimada T, Harada A, et al (2003). Amplification, up-regulation and over-expression of DVL-1, the human counterpart of the Drosophila disheveled gene, in primary breast cancers. Cancer Sci, 94, 515-8. https://doi.org/10.1111/j.1349-7006.2003.tb01475.x
  42. Nelson WJ, Nusse R (2004). Convergence of Wnt, beta-catenin, and cadherin pathways. Sci, 303, 1483-7. https://doi.org/10.1126/science.1094291
  43. Nguyen L (2012). Cancer stem cells: an evolving concept. Nature Rev Cancer, 12, 133-43.
  44. O'Brien CA, Kreso A, Jamieson CH, et al (2010). Cancer stem cells and self-renewal. Clin Cancer Res, 16, 3113-20. https://doi.org/10.1158/1078-0432.CCR-09-2824
  45. Pannuti A, Foreman K, Rizzo P, et al (2010). Targeting Notch to target cancer stem cells. Clin Cancer Res, 16, 3141-52. https://doi.org/10.1158/1078-0432.CCR-09-2823
  46. Pearce DJ, Taussig D, Simpson C, et al (2005). Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples. Stem Cells, 23, 752-60. https://doi.org/10.1634/stemcells.2004-0292
  47. Phillips TM, McBride WH, Pajonk F, et al (2006). The response of CD24(-/low)/$CD^{44+}$ breast cancer-initiating cells to radiation. J Natl Cancer Inst, 98, 1777-85. https://doi.org/10.1093/jnci/djj495
  48. Pietsch T, Waha A, Koch A, et al (1997). Medulloblastomas of the desmoplastic variant carry mutations of the human homologue of Drosophila patched. Cancer Res, 57, 2085-8.
  49. Prince ME, Ailles LE (2008). Cancer stem cells in head and neck squamous cell cancer. J Clin Oncol, 26, 2871-5. https://doi.org/10.1200/JCO.2007.15.1613
  50. Prince ME, Sivanandan R, Kaczorowski A, et al (2007). Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA, 104, 973-8. https://doi.org/10.1073/pnas.0610117104
  51. Huff CA, Matsui W (2008). Multiple myeloma cancer stem cells. J Clin Oncol, 26, 2895-900. https://doi.org/10.1200/JCO.2007.15.8428
  52. Iliopoulos D, Hirsch HA, Wang G, et al (2011). Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci USA, 108, 1397-402. https://doi.org/10.1073/pnas.1018898108
  53. Ingham PW (2008). Hedgehog signalling. Curr Biol, 18, 238-41. https://doi.org/10.1016/j.cub.2008.01.050
  54. Jamieson CH, Weissman IL, Passegue E, et al (2004). Chronic versus acute myelogenous leukemia: a question of selfrenewal. Cancer Cell, 6, 531-3.
  55. Johnson RL, Rothman AL, Xie J, et al (1996). Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Sci, 272, 1668-71. https://doi.org/10.1126/science.272.5268.1668
  56. Jones S, Zhang X, Parsons DW, et al (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Sci, 321, 1801-6. https://doi.org/10.1126/science.1164368
  57. Kakarala M, Wicha MS (2007). Cancer stem cells: implications for cancer treatment and prevention. Cancer J, 13, 271-5. https://doi.org/10.1097/PPO.0b013e318156da4e
  58. Kakarala M, Wicha MS (2008). Implications of the cancer stemcell hypothesis for breast cancer prevention and therapy. J Clin Oncol, 26, 2813-20. https://doi.org/10.1200/JCO.2008.16.3931
  59. Kao GD, Jiang Z, Fernandes AM, et al (2007). Inhibition of phosphatidylinositol-3-OH kinase/Akt signaling impairs DNA repair in glioblastoma cells following ionizing radiation. J Biol Chem, 282, 21206-12. https://doi.org/10.1074/jbc.M703042200
  60. Karhadkar SS, Bova GS, Abdallah N, et al (2004). Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature, 431, 707-12. https://doi.org/10.1038/nature02962
  61. Kopan R, Ilagan MX (2009). The canonical Notch signaling pathway: unfolding the activation mechanism. Cell, 137, 216-33. https://doi.org/10.1016/j.cell.2009.03.045
  62. Krause M, Yaromina A, Eicheler W, et al (2011). Cancer stem cells: targets and potential biomarkers for radiotherapy. Clin Cancer Res, 17, 7224-9. https://doi.org/10.1158/1078-0432.CCR-10-2639
  63. LaBarge MA (2010). The Difficulty of Targeting Cancer Stem Cell Niches. Clin Cancer Res, 16, 3121-9. https://doi.org/10.1158/1078-0432.CCR-09-2933
  64. Li C, Heidt DG, Dalerba P, et al (2007). Identification of pancreatic cancer stem cells. Cancer Res, 67, 1030-7. https://doi.org/10.1158/0008-5472.CAN-06-2030
  65. Li X, Lewis MT, Huang J, et al (2008). Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst, 100, 672-9. https://doi.org/10.1093/jnci/djn123
  66. Li Y, Laterra J (2012). Cancer stem cells: distinct entities or dynamically regulated phenotypes? Cancer Res, 72, 576-80. https://doi.org/10.1158/0008-5472.CAN-11-3070
  67. Liu G, Yuan X, Zeng Z, et al (2006). Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer, 5, 67. https://doi.org/10.1186/1476-4598-5-67
  68. Liu S, Dontu G, Mantle ID, et al (2006). Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res, 66, 6063-71. https://doi.org/10.1158/0008-5472.CAN-06-0054
  69. Magni M, Shammah S, Schiro R, et al (1996). Induction of cyclophosphamide-resistance by aldehyde-dehydrogenase gene transfer. Blood, 87, 1097-103.
  70. Gallmeier E, Hermann PC, Mueller MT, et al (2011). Inhibition of ataxia telangiectasia- and Rad3-related function abrogates the in vitro and in vivo tumorigenicity of human colon cancer cells through depletion of the CD133(+) tumor-initiating cell fraction. Stem Cells, 29, 418-29. https://doi.org/10.1002/stem.595
  71. Gao MQ, Choi YP, Kang S, et al (2010). CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene, 29, 2672-80. https://doi.org/10.1038/onc.2010.35
  72. Ghafouri-Fard S, Modarressi MH (2009). Cancer-testis antigens: potential targets for cancer immunotherapy. Arch Iran Med, 12, 395-404.
  73. Ghafouri-Fard S (2012). Are cancer-testis antigens cancer stem cell markers? J Sing Cel Genom Proteomics, 1, 1.
  74. Ghafouri-Fard S, Modarressi MH (2012). Expression of cancer-testis genes in brain tumors: implications for cancer immunotherapy. Immunotherapy, 4, 59-75. https://doi.org/10.2217/imt.11.145
  75. Ghafouri-Fard S, Ghafouri-Fard S (2012). Immunotherapy in nonmelanoma skin cancer. Immunotherapy, 4, 499-510. https://doi.org/10.2217/imt.12.29
  76. Ginestier C, Hur MH, Charafe-Jauffret E, et al (2007). ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell, 1, 555-67. https://doi.org/10.1016/j.stem.2007.08.014
  77. Grana TM, Rusyn EV, Zhou H, et al (2002). Ras mediates radioresistance through both phosphatidylinositol 3-kinasedependent and Raf-dependent but mitogen-activated protein kinase/extracellular signal-regulated kinase kinaseindependent signaling pathways. Cancer Res, 62, 4142-50.
  78. Gurney A, Axelrod F, Bond CJ, et al (2012). Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci USA, 109, 11717-22. https://doi.org/10.1073/pnas.1120068109
  79. Hari L, Brault V, Kleber M, et al (2002). Lineage-specific requirements of beta-catenin in neural crest development. J Cell Biol, 159, 867-80. https://doi.org/10.1083/jcb.200209039
  80. Harrison H, Farnie G, Brennan KR, et al (2010). Breast cancer stem cells: something out of notching? Cancer Res, 70, 8973-6. https://doi.org/10.1158/0008-5472.CAN-10-1559
  81. Harrison H, Farnie G, Howell SJ, et al (2010). Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res, 70, 709-18. https://doi.org/10.1158/0008-5472.CAN-09-1681
  82. Hart LS, El-Deiry WS (2008). Invincible, but not invisible: imaging approaches toward in vivo detection of cancer stem cells. J Clin Oncol, 26, 2901-10. https://doi.org/10.1200/JCO.2008.16.9573
  83. Hecht A, Vleminckx K, Stemmler MP, et al (2000). The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. EMBO J, 19, 1839-50. https://doi.org/10.1093/emboj/19.8.1839
  84. Hermann PC, Huber SL, Herrler T, et al (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1, 313-23. https://doi.org/10.1016/j.stem.2007.06.002
  85. Hirschmann-Jax C, Foster AE, Wulf GG, et al (2004). A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA, 101, 14228-33. https://doi.org/10.1073/pnas.0400067101
  86. Boman BM, Huang E (2008). Human colon cancer stem cells: a new paradigm in gastrointestinal oncology. J Clin Oncol, 26, 2828-38. https://doi.org/10.1200/JCO.2008.17.6941
  87. Boman BM, Wicha MS (2008). Cancer stem cells: a step toward the cure. J Clin Oncol, 26, 2795-9. https://doi.org/10.1200/JCO.2008.17.7436
  88. Bonnet D, Dick JE (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 3, 730-7. https://doi.org/10.1038/nm0797-730
  89. Boon EM, Keller JJ, Wormhoudt TA, et al (2004). Sulindac targets nuclear beta-catenin accumulation and Wnt signalling in adenomas of patients with familial adenomatous polyposis and in human colorectal cancer cell lines. Br J Cancer, 90, 224-9. https://doi.org/10.1038/sj.bjc.6601505
  90. Bracker TU, Giebel B, Spanholtz J, et al (2006). Stringent regulation of DNA repair during human hematopoietic differentiation: a gene expression and functional analysis. Stem Cells, 24, 722-30. https://doi.org/10.1634/stemcells.2005-0227
  91. Chen MS, Woodward WA, Behbod F, et al (2007). Wnt/betacatenin mediates radiation resistance of Sca1+ progenitors in an immortalized mammary gland cell line. J Cell Sci, 120, 468-77. https://doi.org/10.1242/jcs.03348
  92. Chen Y, Fischer WH, Gill GN, et al (1997). Regulation of the ERBB-2 promoter by RBPJkappa and NOTCH. J Biol Chem, 272, 14110-4. https://doi.org/10.1074/jbc.272.22.14110
  93. Clement V, Sanchez P, de Tribolet N, et al (2007). HEDGEHOGGLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol, 17, 165-72. https://doi.org/10.1016/j.cub.2006.11.033
  94. Collins AT, Berry PA, Hyde C, et al (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res, 65, 10946-51. https://doi.org/10.1158/0008-5472.CAN-05-2018
  95. Dihlmann S, Siermann A, von Knebel Doeberitz M, et al (2001). The nonsteroidal anti-inflammatory drugs aspirin and indomethacin attenuate beta-catenin/TCF-4 signaling. Oncogene, 20, 645-53. https://doi.org/10.1038/sj.onc.1204123
  96. Dirks PB (2008). Brain tumor stem cells: bringing order to the chaos of brain cancer. J Clin Oncol, 26, 2916-24. https://doi.org/10.1200/JCO.2008.17.6792
  97. Domanska UM, Kruizinga RC, Nagengast WB, et al (2012). A review on CXCR4/CXCL12 axis in oncology: No place to hide. Eur J Cancer, Epub ahead of print.
  98. Eramo A, Lotti F, Sette G, et al (2008). Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ, 15, 504-14. https://doi.org/10.1038/sj.cdd.4402283
  99. Eyler CE, Foo WC, LaFiura KM, et al (2008). Brain cancer stem cells display preferential sensitivity to Akt inhibition. Stem Cells, 26, 3027-36. https://doi.org/10.1634/stemcells.2007-1073
  100. Eyler CE, Rich JN (2008). Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol, 26, 2839-45. https://doi.org/10.1200/JCO.2007.15.1829
  101. Fan X, Khaki L, Zhu TS, et al (2010). NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells, 28, 5-16.
  102. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al (2003). Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA, 100, 3983-8. https://doi.org/10.1073/pnas.0530291100
  103. Bao S, Wu Q, McLendon RE, et al (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 444, 756-60. https://doi.org/10.1038/nature05236
  104. Bao S, Wu Q, Sathornsumetee S, et al (2006). Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res, 66, 7843-8. https://doi.org/10.1158/0008-5472.CAN-06-1010
  105. Blazek ER, Foutch JL, Maki G, et al (2007). Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133- cells, and the CD133+ sector is enlarged by hypoxia. Int J Radiat Oncol Biol Phys, 67, 1-5. https://doi.org/10.1016/j.ijrobp.2006.09.037

Cited by

  1. Expression Analysis of Two Cancer-testis Genes, FBXO39 and TDRD4, in Breast Cancer Tissues and Cell Lines vol.14, pp.11, 2013, https://doi.org/10.7314/APJCP.2013.14.11.6625
  2. All-trans-retinoic Acid Promotes Iodine Uptake Via Up-regulating the Sodium Iodide Symporter in Medullary Thyroid Cancer Stem Cells vol.15, pp.4, 2014, https://doi.org/10.7314/APJCP.2014.15.4.1859
  3. Preoperative low dose NSAID treatment influences the genes for stemness, growth, invasion and metastasis in colorectal cancer vol.45, pp.6, 2014, https://doi.org/10.3892/ijo.2014.2686
  4. All-trans retinoic acid suppresses malignant characteristics of CD133-positive thyroid cancer stem cells and induces apoptosis vol.12, pp.8, 2017, https://doi.org/10.1371/journal.pone.0182835
  5. Expression analysis of cancer-testis genes in prostate cancer reveals candidates for immunotherapy vol.9, pp.12, 2017, https://doi.org/10.2217/imt-2017-0083
  6. Melanoma: a prototype of cancer-testis antigen-expressing malignancies vol.9, pp.13, 2017, https://doi.org/10.2217/imt-2017-0091
  7. Long non-coding RNA expression in bladder cancer pp.1867-2469, 2017, https://doi.org/10.1007/s12551-017-0379-y
  8. Cancer–testis genes as candidates for immunotherapy in breast cancer vol.6, pp.2, 2014, https://doi.org/10.2217/imt.13.165
  9. New York esophageal squamous cell carcinoma-1 and cancer immunotherapy vol.7, pp.4, 2015, https://doi.org/10.2217/imt.15.3
  10. MAGE-A3: an immunogenic target used in clinical practice vol.7, pp.6, 2015, https://doi.org/10.2217/imt.15.29