DOI QR코드

DOI QR Code

Endocrine Disruptors and Breast Cancer Risk - Time to Consider the Environment

  • Abdel-Rahman, Wael M. (Department of Medical Laboratory Sciences, College of Medicine, University of Sharjah) ;
  • Moustafa, Yasser M. (Department of Pharmacology, College of Pharmacy, Suez Canal University) ;
  • Ahmed, Bassamat O. (Department of Nursing, College of Health Sciences, College of Medicine, University of Sharjah) ;
  • Mostafa, Randa M. (Department of Basic Medical Sciences, College of Medicine, University of Sharjah)
  • Published : 2012.12.31

Abstract

The term endocrine disruptors is used to describe a variety of natural and manmade substances that have the capacity to potentially interfere with and modify the normal physiology of endocrine system either by mimicking, blocking or modulating the actions of natural endogenous hormones. The rising incidence of breast cancer over the last 50 years and the documented higher incidence in urban as compared to rural areas suggest a relationship to the introduction and increased use of xenoestrogens in our environment. The literature has developed over the last decades where initial experiments on endocrine disruptors did not support an involvement in breast cancer, and then evidence mounted implicating various environmental factors including hormones, endocrine disrupting chemicals and non-endocrine disrupting environmental carcinogens in the pathogenesis of breast cancer. Available data support the hypothesis that exposure to endocrine disruptors in utero leaves a signature on mammary gland morphogenesis so that the resulting dysgenic gland becomes more predisposed to develop tumors upon exposures to additional insults later on during life. Exceptionally, exposure to phytoestrogens could be beneficial to human health. Most of the available data are from well developed countries while the developing countries are still understudied regarding these issues. Here, we raise a note of caution about potential role of environmental toxins including endocrine disruptors in breast cancer development and call for serious measures to be taken by all involved parties in the developing world.

Keywords

Bisphenol A;breast cancer;endocrine disruptors;estrogen;phytoestrogens;soy

References

  1. Tsutsui T, Tamura Y, Suzuki A, et al (2000). Mammalian cell transformation and aneuploidy induced by five bisphenols. Int J Cancer, 86, 151-4. https://doi.org/10.1002/(SICI)1097-0215(20000415)86:2<151::AID-IJC1>3.0.CO;2-0
  2. Tsutsui T, Tamura Y, Yagi E, et al (1998). Bisphenol-A induces cellular transformation, aneuploidy and DNA adduct formation in cultured Syrian hamster embryo cells. Int J Cancer, 75, 290-4. https://doi.org/10.1002/(SICI)1097-0215(19980119)75:2<290::AID-IJC19>3.0.CO;2-H
  3. van Duursen MB, Nijmeijer SM, de Morree ES, et al (2011). Genistein induces breast cancer-associated aromatase and stimulates estrogen-dependent tumor cell growth in in vitro breast cancer model. Toxicology, 289, 67-73. https://doi.org/10.1016/j.tox.2011.07.005
  4. Vandenberg LN, Maffini MV, Wadia PR, et al (2007). Exposure to environmentally relevant doses of the xenoestrogen bisphenol-A alters development of the fetal mouse mammary gland. Endocrinology, 148, 116-27. https://doi.org/10.1210/en.2006-0561
  5. Viel JF, Clement MC, Hagi M, et al (2008). Dioxin emissions from a municipal solid waste incinerator and risk of invasive breast cancer: a population-based case-control study with GIS-derived exposure. Int J Hlth Geogr, 7, 4. https://doi.org/10.1186/1476-072X-7-4
  6. vom Saal FS, Akingbemi BT, Belcher SM, et al (2007). Chapel Hill bisphenol A expert panel consensus statement: integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reprod Toxicol, 24, 131-8. https://doi.org/10.1016/j.reprotox.2007.07.005
  7. Ward H, Chapelais G, Kuhnle GG, et al (2008). Breast cancer risk in relation to urinary and serum biomarkers of phytoestrogen exposure in the European Prospective into Cancer-Norfolk cohort study. Breast Cancer Res, 10, 32.
  8. Watson CS, Alyea RA, Jeng YJ, et al (2007a). Nongenomic actions of low concentration estrogens and xenoestrogens on multiple tissues. Mol Cell Endocrinol, 274, 1-7. https://doi.org/10.1016/j.mce.2007.05.011
  9. Watson CS, Bulayeva NN, Wozniak AL, et al (2007b). Xenoestrogens are potent activators of nongenomic estrogenic responses. Steroids, 72, 124-34. https://doi.org/10.1016/j.steroids.2006.11.002
  10. Wittassek M, Heger W, Koch HM, et al (2007). Daily intake of di(2-ethylhexyl)phthalate (DEHP) by German children -- A comparison of two estimation models based on urinary DEHP metabolite levels. Int J Hyg Environ Hlth, 210, 35-42. https://doi.org/10.1016/j.ijheh.2006.11.009
  11. Xiao CW (2008). Health effects of soy protein and isoflavones in humans. J Nutr, 138, 1244-9.
  12. Yoonessi M, Mariniello DA, Wieckowska WS, et al (1981). DES story: review and report. NY State J Med, 81, 195-8.
  13. Yurino H, Ishikawa S, Sato T, et al (2004). Endocrine disruptors (environmental estrogens) enhance autoantibody production by B1 cells. Toxicol Sci, 81, 139-47. https://doi.org/10.1093/toxsci/kfh179
  14. Ziegler RG, Hoover RN, Pike MC, et al (1993). Migration patterns and breast cancer risk in Asian-American women. J Natl Cancer Inst, 85, 1819-27. https://doi.org/10.1093/jnci/85.22.1819
  15. Richter CA, Birnbaum LS, Farabollini F, et al (2007). In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol, 24, 199-224. https://doi.org/10.1016/j.reprotox.2007.06.004
  16. Rubin MM (2007). Antenatal exposure to DES: lessons learned... future concerns. Obstet Gynecol Surv, 62, 548-55. https://doi.org/10.1097/01.ogx.0000271138.31234.d7
  17. Sahin K, Tuzcu M, Sahin N, et al (2011). Inhibitory effects of combination of lycopene and genistein on 7,12- dimethyl benz(a)anthracene-induced breast cancer in rats. Nutr Cancer, 63, 1279-86. https://doi.org/10.1080/01635581.2011.606955
  18. Sanderson T (2011). The steroid hormone biosynthesis pathway as a target for endocrine chemicals. Toxicological Sci, 94, 3-21.
  19. Santell RC, Chang YC, Nair MG, et al (1997). Dietary genistein exerts estrogenic effects upon the uterus, mammary gland and the hypothalamic/pituitary axis in rats. J Nutr, 127, 263-9.
  20. Seo HS, Choi HS, Choi HS, et al (2011). Phytoestrogens induce apoptosis via extrinsic pathway, inhibiting nuclear factorkappaB signaling in HER2-overexpressing breast cancer cells. Anticancer Res, 31, 3301-13.
  21. Setchell KD, Brown NM, Zhao X, et al (2011). Soy isoflavone phase II metabolism differs between rodents and humans: implications for the effect on breast cancer risk. Am J Clin Nutr, 94, 1284-94. https://doi.org/10.3945/ajcn.111.019638
  22. Setchell KD, Gosselin SJ, Welsh MB, et al (1987). Dietary estrogens--a probable cause of infertility and liver disease in captive cheetahs. Gastroenterology, 93, 225-33.
  23. Shu XO, Zheng Y, Cai H, et al (2009). Soy food intake and breast cancer survival. Jama, 302, 2437-43. https://doi.org/10.1001/jama.2009.1783
  24. Skinner MK, Manikkam M, Guerrero-Bosagna C (2010). Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab, 21, 214-22. https://doi.org/10.1016/j.tem.2009.12.007
  25. Skinner MK, Manikkam M, Guerrero-Bosagna C (2011). Epigenetic transgenerational actions of endocrine disruptors. Reprod Toxicol, 31, 337-43. https://doi.org/10.1016/j.reprotox.2010.10.012
  26. Soto AM, Maffini MV, Sonnenschein C (2008). Neoplasia as development gone awry: the role of endocrine disruptors. Int J Androl, 31, 288-93. https://doi.org/10.1111/j.1365-2605.2007.00834.x
  27. Speirs V, Walker RA (2007). New perspectives into the biological and clinical relevance of oestrogen receptors in the human breast. J Pathol, 211, 499-506. https://doi.org/10.1002/path.2130
  28. Takahashi S, Chi XJ, Yamaguchi Y, et al (2001). Mutagenicity of bisphenol A and its suppression by interferon-alpha in human RSa cells. Mutat Res, 490, 199-207. https://doi.org/10.1016/S1383-5718(00)00161-3
  29. Takeshita A, Koibuchi N, Oka J, et al (2001). Bisphenol-A, an environmental estrogen, activates the human orphan nuclear receptor, steroid and xenobiotic receptor-mediated transcription. Eur J Endocrinol, 145, 513-7. https://doi.org/10.1530/eje.0.1450513
  30. Taylor RT, Wang F, Hsu EL, et al (2009). Roles of coactivator proteins in dioxin induction of CYP1A1 and CYP1B1 in human breast cancer cells. Toxicol Sci, 107, 1-8.
  31. Toppari J, Larsen JC, Christiansen P, et al (1996). Male reproductive health and environmental xenoestrogens. Environ Hlth Perspect, 104, 741-803. https://doi.org/10.1289/ehp.96104s4741
  32. Montales MT, Rahal OM, Kang J, et al (2012). Repression of mammosphere formation of human breast cancer cells by soy isoflavone genistein and blueberry polyphenolic acids suggests diet-mediated targeting of cancer stem-like/ progenitor cells. Carcinogenesis, 33, 652-60. https://doi.org/10.1093/carcin/bgr317
  33. Mostafa RM, Mirghani z, moustafa KM, et al (2007). New chapter in old story : Endocrine disruptos and male reproductive system. JMSR, 2, 33-42.
  34. Munoz-de-Toro M, Markey CM, Wadia PR, et al (2005). Perinatal exposure to bisphenol-A alters peripubertal mammary gland development in mice. Endocrinology, 146, 4138-47. https://doi.org/10.1210/en.2005-0340
  35. Murray TJ, Maffini MV, Ucci AA, et al (2007). Induction of mammary gland ductal hyperplasias and carcinoma in situ following fetal bisphenol A exposure. Reprod Toxicol, 23, 383-90. https://doi.org/10.1016/j.reprotox.2006.10.002
  36. Ndahi H (2000). The new world of plastics. The Technology Teacher, 16, 18-22.
  37. Nieminen TT, Shoman S, Eissa S, et al (2012). Distinct genetic and epigenetic signatures of colorectal cancers according to ethnic origin. Cancer Epidemiol Biomarkers Prev, 21, 202-11. https://doi.org/10.1158/1055-9965.EPI-11-0662
  38. Paech K, Webb P, Kuiper GG, et al (1997). Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. Science, 277, 1508-10. https://doi.org/10.1126/science.277.5331.1508
  39. Palmer JR, Hatch EE, Rosenberg CL, et al (2002). Risk of breast cancer in women exposed to diethylstilbestrol in utero: prelimiinary results (United States). Cancer Causes Control, 13, 753-8. https://doi.org/10.1023/A:1020254711222
  40. Palmer JR, Wise LA, Hatch EE, et al (2006). Prenatal diethylstilbestrol exposure and risk of breast cancer. Cancer Epidemiol Biomarkers Prev, 15, 1509-14. https://doi.org/10.1158/1055-9965.EPI-06-0109
  41. Parkin DM, Fernandez LM (2006). Use of statistics to assess the global burden of breast cancer. Breast J, 12, 70-80. https://doi.org/10.1111/j.1075-122X.2006.00205.x
  42. Patisaul HB, Adewale HB (2009). Long-term effects of environmental endocrine disruptors on reproductive physiology and behavior. Front Behav Neurosci, 3, 10.
  43. Petrakis NL, Barnes S, King EB, et al (1996). Stimulatory influence of soy protein isolate on breast secretion in preand postmenopausal women. Cancer Epidemiol Biomarkers Prev, 5, 785-94.
  44. Pike MC, Spicer DV, Dahmoush L, et al (1993). Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol Rev, 15, 17-35.
  45. Powell E, Shanle E, Brinkman A, et al (2012). Identification of estrogen receptor dimer selective ligands reveals growthinhibitory effects on cells that co-express ERalpha and ERbeta. PLoS One, 7, 30993. https://doi.org/10.1371/journal.pone.0030993
  46. Quesada I, Fuentes E, Viso-Leon MC, et al (2002). Low doses of the endocrine disruptor bisphenol-A and the native hormone 17beta-estradiol rapidly activate transcription factor CREB. Faseb J, 16, 1671-3.
  47. Rajah TT, Du N, Drews N, et al (2009). Genistein in the presence of 17beta-estradiol inhibits proliferation of ERbeta breast cancer cells. Pharmacology, 84, 68-73. https://doi.org/10.1159/000226123
  48. Kim HS, Han SY, Yoo SD, et al (2001). Potential estrogenic effects of bisphenol-A estimated by in vitro and in vivo combination assays. J Toxicol Sci, 26, 111-8. https://doi.org/10.2131/jts.26.111
  49. Klein CB, King AA (2007). Genistein genotoxicity: critical considerations of in vitro exposure dose. Toxicol Appl Pharmacol, 224, 1-11. https://doi.org/10.1016/j.taap.2007.06.022
  50. Korde LA, Wu AH, Fears T, et al (2009). Childhood soy intake and breast cancer risk in Asian American women. Cancer Epidemiol Biomarkers Prev, 18, 1050-9. https://doi.org/10.1158/1055-9965.EPI-08-0405
  51. Kortenkamp A (2011). Are cadmium and other heavy metal compounds acting as endocrine disrupters? Met Ions Life Sci, 8, 305-17.
  52. Krishnan AV, Stathis P, Permuth SF, et al (1993). Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology, 132, 2279-86. https://doi.org/10.1210/en.132.6.2279
  53. Kuiper GG, Lemmen JG, Carlsson B, et al (1998). Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology, 139, 4252-63. https://doi.org/10.1210/en.139.10.4252
  54. Lampe JW, Nishino Y, Ray RM, et al (2007). Plasma isoflavones and fibrocystic breast conditions and breast cancer among women in Shanghai, China. Cancer Epidemiol Biomarkers Prev, 16, 2579-86. https://doi.org/10.1158/1055-9965.EPI-07-0368
  55. LaPensee EW, LaPensee CR, Fox S, et al (2010). Bisphenol A and estradiol are equipotent in antagonizing cisplatininduced cytotoxicity in breast cancer cells. Cancer Lett, 290, 167-73. https://doi.org/10.1016/j.canlet.2009.09.005
  56. Lapensee EW, Tuttle TR, Fox SR, et al (2009). Bisphenol A at low nanomolar doses confers chemoresistance in estrogen receptor-alpha-positive and -negative breast cancer cells. Environ Hlth Perspect, 117, 175-80. https://doi.org/10.1289/ehp.11788
  57. Lattrich C, Lubig J, Springwald A, et al (2011). Additive effects of trastuzumab and genistein on human breast cancer cells. Anticancer Drugs, 22, 253-61. https://doi.org/10.1097/CAD.0b013e3283427bb5
  58. Mahady GB, Parrot J, Lee C, et al (2003). Botanical dietary supplement use in peri- and postmenopausal women. Menopause, 10, 65-72.
  59. Mai Z, Blackburn GL, Zhou JR (2007). Soy phytochemicals synergistically enhance the preventive effect of tamoxifen on the growth of estrogen-dependent human breast carcinoma in mice. Carcinogenesis, 28, 1217-23. https://doi.org/10.1093/carcin/bgm004
  60. Maizlish N, Moses M (1990). Fieldworker exposure to pesticides. J Occup Med, 32, 90-4.
  61. Markey CM, Coombs MA, Sonnenschein C, et al (2003). Mammalian development in a changing environment: exposure to endocrine disruptors reveals the developmental plasticity of steroid-hormone target organs. Evol Dev, 5, 67-75. https://doi.org/10.1046/j.1525-142X.2003.03011.x
  62. Markey CM, Luque EH, Munoz De Toro M, et al (2001). In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland. Biol Reprod, 65, 1215-23.
  63. Metzler M (1981). The metabolism of diethylstilbestrol. CRC Crit Rev Biochem, 10, 171-212. https://doi.org/10.3109/10409238109113599
  64. Molzberger AF, Vollmer G, Hertrampf T, et al (2012). In utero and postnatal exposure to isoflavones results in a reduced responsivity of the mammary gland towards estradiol. Mol Nutr Food Res, 56, 399-409. https://doi.org/10.1002/mnfr.201100371
  65. Guha N, Kwan ML, Quesenberry CP, et al (2009). Soy isoflavones and risk of cancer recurrence in a cohort of breast cancer survivors: the life after cancer epidemiology study. Breast Cancer Res Treat, 118, 395-405. https://doi.org/10.1007/s10549-009-0321-5
  66. Harner T, Shoeib M, Diamond M, et al (2004). Using passive air samplers to assess urban-rural trends for persistent organic pollutants. 1. Polychlorinated biphenyls and organochlorine pesticides. Environ Sci Technol, 38, 4474-83. https://doi.org/10.1021/es040302r
  67. Herbst AL, Ulfelder H, Poskanzer DC (1971). Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med, 284, 878-81. https://doi.org/10.1056/NEJM197104222841604
  68. Hoover RN, Hyer M, Pfeiffer RM, et al (2011). Adverse health outcomes in women exposed in utero to diethylstilbestrol. N Engl J Med, 365, 1304-14. https://doi.org/10.1056/NEJMoa1013961
  69. Hwang CS, Kwak HS, Lim HJ, et al (2006). Isoflavone metabolites and their in vitro dual functions: they can act as an estrogenic agonist or antagonist depending on the estrogen concentration. J Steroid Biochem Mol Biol, 101, 246-53. https://doi.org/10.1016/j.jsbmb.2006.06.020
  70. Ibarluzea Jm J, Fernandez MF, Santa-Marina L, et al (2004). Breast cancer risk and the combined effect of environmental estrogens. Cancer Causes Control, 15, 591-600. https://doi.org/10.1023/B:CACO.0000036167.51236.86
  71. Iso T, Watanabe T, Iwamoto T, et al (2006). DNA damage caused by bisphenol A and estradiol through estrogenic activity. Biol Pharm Bull, 29, 206-10. https://doi.org/10.1248/bpb.29.206
  72. Iwasaki M, Inoue M, Otani T, et al (2008). Plasma isoflavone level and subsequent risk of breast cancer among Japanese women: a nested case-control study from the Japan public health center-based prospective study group. J Clin Oncol, 26, 1677-83. https://doi.org/10.1200/JCO.2007.13.9964
  73. Izzotti A, Kanitz S, D'Agostini F, et al (2009). Formation of adducts by bisphenol A, an endocrine disruptor, in DNA in vitro and in liver and mammary tissue of mice. Mutat Res, 679, 28-32. https://doi.org/10.1016/j.mrgentox.2009.07.011
  74. Izzotti A, Longobardi M, Cartiglia C, et al (2010). Pharmacological modulation of genome and proteome alterations in mice treated with the endocrine disruptor bisphenol A. Curr Cancer Drug Targets, 10, 147-54. https://doi.org/10.2174/156800910791054220
  75. Ju YH, Allred KF, Allred CD, et al (2006). Genistein stimulates growth of human breast cancer cells in a novel, postmenopausal animal model, with low plasma estradiol concentrations. Carcinogenesis, 27, 1292-9. https://doi.org/10.1093/carcin/bgi370
  76. Ju YH, Doerge DR, Allred KF, et al (2002). Dietary genistein negates the inhibitory effect of tamoxifen on growth of estrogen-dependent human breast cancer (MCF-7) cells implanted in athymic mice. Cancer Res, 62, 2474-7.
  77. Ju YH, Doerge DR, Woodling KA, et al (2008). Dietary genistein negates the inhibitory effect of letrozole on the growth of aromatase-expressing estrogen-dependent human breast cancer cells (MCF-7Ca) in vivo. Carcinogenesis, 29, 2162-8. https://doi.org/10.1093/carcin/bgn161
  78. Khan SA, Chatterton RT, Michel N, et al (2011). Soy isoflavone supplementation for breast cancer risk reduction: a randomized phase II trial. Cancer Prev Res (Phila), 5, 309-19.
  79. Darbre PD, Byford JR, Shaw LE, et al (2002). Oestrogenic activity of isobutylparaben in vitro and in vivo. J Appl Toxicol, 22, 219-26. https://doi.org/10.1002/jat.860
  80. Davis DL, Bradlow HL, Wolff M, et al (1993). Medical hypothesis: xenoestrogens as preventable causes of breast cancer. Environ Hlth Perspect, 101, 372-7. https://doi.org/10.1289/ehp.93101372
  81. Dey S, Soliman AS, Hablas A, et al (2010). Urban-rural differences in breast cancer incidence in Egypt (1999-2006). Breast, 19, 417-23. https://doi.org/10.1016/j.breast.2010.04.005
  82. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, et al (2009). Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev, 30, 293-342. https://doi.org/10.1210/er.2009-0002
  83. Dong JY, Qin LQ (2011). Soy isoflavones consumption and risk of breast cancer incidence or recurrence: a meta-analysis of prospective studies. Breast Cancer Res Treat, 125, 315-23. https://doi.org/10.1007/s10549-010-1270-8
  84. Dong S, Terasaka S, Kiyama R (2011). Bisphenol A induces a rapid activation of Erk1/2 through GPR30 in human breast cancer cells. Environ Pollut, 159, 212-8. https://doi.org/10.1016/j.envpol.2010.09.004
  85. Du M, Yang X, Hartman JA, et al (2012). Low-dose dietary genistein negates the therapeutic effect of tamoxifen in athymic nude mice. Carcinogenesis, 33, 895-901. https://doi.org/10.1093/carcin/bgs017
  86. Durando M, Kass L, Perdomo V, et al (2011). Prenatal exposure to bisphenol A promotes angiogenesis and alters steroidmediated responses in the mammary glands of cycling rats. J Steroid Biochem Mol Biol, 127, 35-43. https://doi.org/10.1016/j.jsbmb.2011.04.001
  87. Durando M, Kass L, Piva J, et al (2007). Prenatal bisphenol A exposure induces preneoplastic lesions in the mammary gland in Wistar rats. Environ Hlth Perspect, 115, 80-6. https://doi.org/10.1289/ehp.115-a80
  88. Ekbom A, Trichopoulos D, Adami HO, et al (1992). Evidence of prenatal influences on breast cancer risk. Lancet, 340, 1015-8. https://doi.org/10.1016/0140-6736(92)93019-J
  89. El Saghir NS, Khalil MK, Eid T, et al (2007). Trends in epidemiology and management of breast cancer in developing Arab countries: a literature and registry analysis. Int J Surg, 5, 225-33. https://doi.org/10.1016/j.ijsu.2006.06.015
  90. Goodman MT, Shvetsov YB, Wilkens LR, et al (2009). Urinary phytoestrogen excretion and postmenopausal breast cancer risk: the multiethnic cohort study. Cancer Prev Res (Phila), 2, 887-94. https://doi.org/10.1158/1940-6207.CAPR-09-0039
  91. Gould JC, Leonard LS, Maness SC, et al (1998). Bisphenol A interacts with the estrogen receptor alpha in a distinct manner from estradiol. Mol Cell Endocrinol, 142, 203-14. https://doi.org/10.1016/S0303-7207(98)00084-7
  92. Grace PB, Taylor JI, Low YL, et al (2004). Phytoestrogen concentrations in serum and spot urine as biomarkers for dietary phytoestrogen intake and their relation to breast cancer risk in European prospective investigation of cancer and nutrition-norfolk. Cancer Epidemiol Biomarkers Prev, 13, 698-708.
  93. Gray J, Evans N, Taylor B, et al (2009). State of the evidence: the connection between breast cancer and the environment. Int J Occup Environ Hlth, 15, 43-78. https://doi.org/10.1179/107735209799449761
  94. Greenberg ER, Barnes AB, Resseguie L, et al (1984). Breast cancer in mothers given diethylstilbestrol in pregnancy. N Engl J Med, 311, 1393-8. https://doi.org/10.1056/NEJM198411293112201
  95. Allred CD, Ju YH, Allred KF, et al (2001b). Dietary genistin stimulates growth of estrogen-dependent breast cancer tumors similar to that observed with genistein. Carcinogenesis, 22, 1667-73. https://doi.org/10.1093/carcin/22.10.1667
  96. Andres S, Abraham K, Appel KE, et al (2011). Risks and benefits of dietary isoflavones for cancer. Crit Rev Toxicol, 41, 463-506. https://doi.org/10.3109/10408444.2010.541900
  97. Barker DJ, Eriksson JG, Forsen T, et al (2002). Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol, 31, 1235-9. https://doi.org/10.1093/ije/31.6.1235
  98. Becker K, Goen T, Seiwert M, et al (2009). GerES IV: phthalate metabolites and bisphenol A in urine of German children. Int J Hyg Environ Hlth, 212, 685-92. https://doi.org/10.1016/j.ijheh.2009.08.002
  99. Bosviel R, Dumollard E, Dechelotte P, et al (2012). Can soy phytoestrogens decrease DNA methylation in BRCA1 and BRCA2 oncosuppressor genes in breast cancer? Omics, 16, 235-44. https://doi.org/10.1089/omi.2011.0105
  100. Boylan ES, Calhoon RE (1979). Mammary tumorigenesis in the rat following prenatal exposure to diethylstilbestrol and postnatal treatment with 7, 12-dimethylbenz[a]anthracene. J Toxicol Environ Hlth, 5, 1059-71. https://doi.org/10.1080/15287397909529814
  101. Bray F, McCarron P, Parkin DM (2004). The changing global patterns of female breast cancer incidence and mortality. Breast Cancer Res, 6, 229-39. https://doi.org/10.1186/bcr932
  102. Brede C, Fjeldal P, Skjevrak I, et al (2003). Increased migration levels of bisphenol A from polycarbonate baby bottles after dishwashing, boiling and brushing. Food Addit Contam, 20, 684-9. https://doi.org/10.1080/0265203031000119061
  103. Byford JR, Shaw LE, Drew MG, et al (2002). Oestrogenic activity of parabens in MCF7 human breast cancer cells. J Steroid Biochem Mol Biol, 80, 49-60. https://doi.org/10.1016/S0960-0760(01)00174-1
  104. Calafat AM, Ye X, Wong LY, et al (2008). Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003- 2004. Environ Hlth Perspect, 116, 39-44.
  105. Canderelli R, Leccesse LA, Miller NL, et al (2007). Benefits of hormone replacement therapy in postmenopausal women. J Am Acad Nurse Pract, 19, 635-41. https://doi.org/10.1111/j.1745-7599.2007.00269.x
  106. Chang EC, Charn TH, Park SH, et al (2008). Estrogen Receptors alpha and beta as determinants of gene expression: influence of ligand, dose, and chromatin binding. Mol Endocrinol, 22, 1032-43. https://doi.org/10.1210/me.2007-0356
  107. Cohn BA, Wolff MS, Cirillo PM, et al (2007). DDT and breast cancer in young women: new data on the significance of age at exposure. Environ Hlth Perspect, 115, 1406-14.
  108. Crain DA, Eriksen M, Iguchi T, et al (2007). An ecological assessment of bisphenol-A: evidence from comparative biology. Reprod Toxicol, 24, 225-39. https://doi.org/10.1016/j.reprotox.2007.05.008
  109. Cravedi JP, Zalko D, Savouret JF, et al (2007). [The concept of endocrine disruption and human health]. Med Sci (Paris), 23, 198-204. https://doi.org/10.1051/medsci/2007232198
  110. Crews D, Willingham E, Skipper JK (2000). Endocrine disruptors: present issues, future directions. Q Rev Biol, 75, 243-60. https://doi.org/10.1086/393498
  111. Crisp TM, Clegg ED, Cooper RL, et al (1998). Environmental endocrine disruption: an effects assessment and analysis. Environ Hlth Perspect, 106, 11-56. https://doi.org/10.1289/ehp.98106s111
  112. Abdel-Rahman WM (2008). Genomic instability and carcinogenesis: an update. Curr Genomics, 9, 535-41. https://doi.org/10.2174/138920208786847926
  113. Adams NR (1995). Detection of the effects of phytoestrogens on sheep and cattle. J Anim Sci, 73, 1509-15.
  114. Allred CD, Allred KF, Ju YH, et al (2001a). Soy diets containing varying amounts of genistein stimulate growth of estrogendependent (MCF-7) tumors in a dose-dependent manner. Cancer Res, 61, 5045-50.

Cited by

  1. Tumorigenic Effects of Endocrine-disrupting Chemicals are Alleviated by Licorice (Glycyrrhiza glabra) Root Extract through Suppression of AhR Expression in Mammalian Cells vol.15, pp.12, 2014, https://doi.org/10.7314/APJCP.2014.15.12.4809
  2. Tumorigenic Effects of Endocrine-Disrupting Chemicals are Alleviated by Licorice (Glycyrrhiza glabra) Root Extract through Suppression of AhR Expression in Mammalian Cells vol.15, pp.13, 2014, https://doi.org/10.7314/APJCP.2014.15.13.5117
  3. Incidence and Mortality of Female Breast Cancer in Jiangsu, China vol.15, pp.6, 2014, https://doi.org/10.7314/APJCP.2014.15.6.2727
  4. In Vitro Evaluation of the Effects of Zearalenone and α-Zearalenol on MCF-7 and MDA-MB-468 Cell Lines of Human Breast Cancer vol.3, pp.4, 2015, https://doi.org/10.17795/rijm30231
  5. Role of Endocrine-Disrupting Engineered Nanomaterials in the Pathogenesis of Type 2 Diabetes Mellitus vol.9, pp.1664-2392, 2018, https://doi.org/10.3389/fendo.2018.00704
  6. Stop eating plastic, molecular signaling of bisphenol A in breast cancer vol.25, pp.24, 2018, https://doi.org/10.1007/s11356-018-2540-y