Endocrine Disruptors and Breast Cancer Risk - Time to Consider the Environment

  • Abdel-Rahman, Wael M. (Department of Medical Laboratory Sciences, College of Medicine, University of Sharjah) ;
  • Moustafa, Yasser M. (Department of Pharmacology, College of Pharmacy, Suez Canal University) ;
  • Ahmed, Bassamat O. (Department of Nursing, College of Health Sciences, College of Medicine, University of Sharjah) ;
  • Mostafa, Randa M. (Department of Basic Medical Sciences, College of Medicine, University of Sharjah)
  • Published : 2012.12.31


The term endocrine disruptors is used to describe a variety of natural and manmade substances that have the capacity to potentially interfere with and modify the normal physiology of endocrine system either by mimicking, blocking or modulating the actions of natural endogenous hormones. The rising incidence of breast cancer over the last 50 years and the documented higher incidence in urban as compared to rural areas suggest a relationship to the introduction and increased use of xenoestrogens in our environment. The literature has developed over the last decades where initial experiments on endocrine disruptors did not support an involvement in breast cancer, and then evidence mounted implicating various environmental factors including hormones, endocrine disrupting chemicals and non-endocrine disrupting environmental carcinogens in the pathogenesis of breast cancer. Available data support the hypothesis that exposure to endocrine disruptors in utero leaves a signature on mammary gland morphogenesis so that the resulting dysgenic gland becomes more predisposed to develop tumors upon exposures to additional insults later on during life. Exceptionally, exposure to phytoestrogens could be beneficial to human health. Most of the available data are from well developed countries while the developing countries are still understudied regarding these issues. Here, we raise a note of caution about potential role of environmental toxins including endocrine disruptors in breast cancer development and call for serious measures to be taken by all involved parties in the developing world.


Bisphenol A;breast cancer;endocrine disruptors;estrogen;phytoestrogens;soy


  1. Tsutsui T, Tamura Y, Suzuki A, et al (2000). Mammalian cell transformation and aneuploidy induced by five bisphenols. Int J Cancer, 86, 151-4.<151::AID-IJC1>3.0.CO;2-0
  2. Tsutsui T, Tamura Y, Yagi E, et al (1998). Bisphenol-A induces cellular transformation, aneuploidy and DNA adduct formation in cultured Syrian hamster embryo cells. Int J Cancer, 75, 290-4.<290::AID-IJC19>3.0.CO;2-H
  3. van Duursen MB, Nijmeijer SM, de Morree ES, et al (2011). Genistein induces breast cancer-associated aromatase and stimulates estrogen-dependent tumor cell growth in in vitro breast cancer model. Toxicology, 289, 67-73.
  4. Vandenberg LN, Maffini MV, Wadia PR, et al (2007). Exposure to environmentally relevant doses of the xenoestrogen bisphenol-A alters development of the fetal mouse mammary gland. Endocrinology, 148, 116-27.
  5. Viel JF, Clement MC, Hagi M, et al (2008). Dioxin emissions from a municipal solid waste incinerator and risk of invasive breast cancer: a population-based case-control study with GIS-derived exposure. Int J Hlth Geogr, 7, 4.
  6. vom Saal FS, Akingbemi BT, Belcher SM, et al (2007). Chapel Hill bisphenol A expert panel consensus statement: integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reprod Toxicol, 24, 131-8.
  7. Ward H, Chapelais G, Kuhnle GG, et al (2008). Breast cancer risk in relation to urinary and serum biomarkers of phytoestrogen exposure in the European Prospective into Cancer-Norfolk cohort study. Breast Cancer Res, 10, 32.
  8. Watson CS, Alyea RA, Jeng YJ, et al (2007a). Nongenomic actions of low concentration estrogens and xenoestrogens on multiple tissues. Mol Cell Endocrinol, 274, 1-7.
  9. Watson CS, Bulayeva NN, Wozniak AL, et al (2007b). Xenoestrogens are potent activators of nongenomic estrogenic responses. Steroids, 72, 124-34.
  10. Wittassek M, Heger W, Koch HM, et al (2007). Daily intake of di(2-ethylhexyl)phthalate (DEHP) by German children -- A comparison of two estimation models based on urinary DEHP metabolite levels. Int J Hyg Environ Hlth, 210, 35-42.
  11. Xiao CW (2008). Health effects of soy protein and isoflavones in humans. J Nutr, 138, 1244-9.
  12. Yoonessi M, Mariniello DA, Wieckowska WS, et al (1981). DES story: review and report. NY State J Med, 81, 195-8.
  13. Yurino H, Ishikawa S, Sato T, et al (2004). Endocrine disruptors (environmental estrogens) enhance autoantibody production by B1 cells. Toxicol Sci, 81, 139-47.
  14. Ziegler RG, Hoover RN, Pike MC, et al (1993). Migration patterns and breast cancer risk in Asian-American women. J Natl Cancer Inst, 85, 1819-27.
  15. Richter CA, Birnbaum LS, Farabollini F, et al (2007). In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol, 24, 199-224.
  16. Rubin MM (2007). Antenatal exposure to DES: lessons learned... future concerns. Obstet Gynecol Surv, 62, 548-55.
  17. Sahin K, Tuzcu M, Sahin N, et al (2011). Inhibitory effects of combination of lycopene and genistein on 7,12- dimethyl benz(a)anthracene-induced breast cancer in rats. Nutr Cancer, 63, 1279-86.
  18. Sanderson T (2011). The steroid hormone biosynthesis pathway as a target for endocrine chemicals. Toxicological Sci, 94, 3-21.
  19. Santell RC, Chang YC, Nair MG, et al (1997). Dietary genistein exerts estrogenic effects upon the uterus, mammary gland and the hypothalamic/pituitary axis in rats. J Nutr, 127, 263-9.
  20. Seo HS, Choi HS, Choi HS, et al (2011). Phytoestrogens induce apoptosis via extrinsic pathway, inhibiting nuclear factorkappaB signaling in HER2-overexpressing breast cancer cells. Anticancer Res, 31, 3301-13.
  21. Setchell KD, Brown NM, Zhao X, et al (2011). Soy isoflavone phase II metabolism differs between rodents and humans: implications for the effect on breast cancer risk. Am J Clin Nutr, 94, 1284-94.
  22. Setchell KD, Gosselin SJ, Welsh MB, et al (1987). Dietary estrogens--a probable cause of infertility and liver disease in captive cheetahs. Gastroenterology, 93, 225-33.
  23. Shu XO, Zheng Y, Cai H, et al (2009). Soy food intake and breast cancer survival. Jama, 302, 2437-43.
  24. Skinner MK, Manikkam M, Guerrero-Bosagna C (2010). Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab, 21, 214-22.
  25. Skinner MK, Manikkam M, Guerrero-Bosagna C (2011). Epigenetic transgenerational actions of endocrine disruptors. Reprod Toxicol, 31, 337-43.
  26. Soto AM, Maffini MV, Sonnenschein C (2008). Neoplasia as development gone awry: the role of endocrine disruptors. Int J Androl, 31, 288-93.
  27. Speirs V, Walker RA (2007). New perspectives into the biological and clinical relevance of oestrogen receptors in the human breast. J Pathol, 211, 499-506.
  28. Takahashi S, Chi XJ, Yamaguchi Y, et al (2001). Mutagenicity of bisphenol A and its suppression by interferon-alpha in human RSa cells. Mutat Res, 490, 199-207.
  29. Takeshita A, Koibuchi N, Oka J, et al (2001). Bisphenol-A, an environmental estrogen, activates the human orphan nuclear receptor, steroid and xenobiotic receptor-mediated transcription. Eur J Endocrinol, 145, 513-7.
  30. Taylor RT, Wang F, Hsu EL, et al (2009). Roles of coactivator proteins in dioxin induction of CYP1A1 and CYP1B1 in human breast cancer cells. Toxicol Sci, 107, 1-8.
  31. Toppari J, Larsen JC, Christiansen P, et al (1996). Male reproductive health and environmental xenoestrogens. Environ Hlth Perspect, 104, 741-803.
  32. Montales MT, Rahal OM, Kang J, et al (2012). Repression of mammosphere formation of human breast cancer cells by soy isoflavone genistein and blueberry polyphenolic acids suggests diet-mediated targeting of cancer stem-like/ progenitor cells. Carcinogenesis, 33, 652-60.
  33. Mostafa RM, Mirghani z, moustafa KM, et al (2007). New chapter in old story : Endocrine disruptos and male reproductive system. JMSR, 2, 33-42.
  34. Munoz-de-Toro M, Markey CM, Wadia PR, et al (2005). Perinatal exposure to bisphenol-A alters peripubertal mammary gland development in mice. Endocrinology, 146, 4138-47.
  35. Murray TJ, Maffini MV, Ucci AA, et al (2007). Induction of mammary gland ductal hyperplasias and carcinoma in situ following fetal bisphenol A exposure. Reprod Toxicol, 23, 383-90.
  36. Ndahi H (2000). The new world of plastics. The Technology Teacher, 16, 18-22.
  37. Nieminen TT, Shoman S, Eissa S, et al (2012). Distinct genetic and epigenetic signatures of colorectal cancers according to ethnic origin. Cancer Epidemiol Biomarkers Prev, 21, 202-11.
  38. Paech K, Webb P, Kuiper GG, et al (1997). Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. Science, 277, 1508-10.
  39. Palmer JR, Hatch EE, Rosenberg CL, et al (2002). Risk of breast cancer in women exposed to diethylstilbestrol in utero: prelimiinary results (United States). Cancer Causes Control, 13, 753-8.
  40. Palmer JR, Wise LA, Hatch EE, et al (2006). Prenatal diethylstilbestrol exposure and risk of breast cancer. Cancer Epidemiol Biomarkers Prev, 15, 1509-14.
  41. Parkin DM, Fernandez LM (2006). Use of statistics to assess the global burden of breast cancer. Breast J, 12, 70-80.
  42. Patisaul HB, Adewale HB (2009). Long-term effects of environmental endocrine disruptors on reproductive physiology and behavior. Front Behav Neurosci, 3, 10.
  43. Petrakis NL, Barnes S, King EB, et al (1996). Stimulatory influence of soy protein isolate on breast secretion in preand postmenopausal women. Cancer Epidemiol Biomarkers Prev, 5, 785-94.
  44. Pike MC, Spicer DV, Dahmoush L, et al (1993). Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol Rev, 15, 17-35.
  45. Powell E, Shanle E, Brinkman A, et al (2012). Identification of estrogen receptor dimer selective ligands reveals growthinhibitory effects on cells that co-express ERalpha and ERbeta. PLoS One, 7, 30993.
  46. Quesada I, Fuentes E, Viso-Leon MC, et al (2002). Low doses of the endocrine disruptor bisphenol-A and the native hormone 17beta-estradiol rapidly activate transcription factor CREB. Faseb J, 16, 1671-3.
  47. Rajah TT, Du N, Drews N, et al (2009). Genistein in the presence of 17beta-estradiol inhibits proliferation of ERbeta breast cancer cells. Pharmacology, 84, 68-73.
  48. Kim HS, Han SY, Yoo SD, et al (2001). Potential estrogenic effects of bisphenol-A estimated by in vitro and in vivo combination assays. J Toxicol Sci, 26, 111-8.
  49. Klein CB, King AA (2007). Genistein genotoxicity: critical considerations of in vitro exposure dose. Toxicol Appl Pharmacol, 224, 1-11.
  50. Korde LA, Wu AH, Fears T, et al (2009). Childhood soy intake and breast cancer risk in Asian American women. Cancer Epidemiol Biomarkers Prev, 18, 1050-9.
  51. Kortenkamp A (2011). Are cadmium and other heavy metal compounds acting as endocrine disrupters? Met Ions Life Sci, 8, 305-17.
  52. Krishnan AV, Stathis P, Permuth SF, et al (1993). Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology, 132, 2279-86.
  53. Kuiper GG, Lemmen JG, Carlsson B, et al (1998). Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology, 139, 4252-63.
  54. Lampe JW, Nishino Y, Ray RM, et al (2007). Plasma isoflavones and fibrocystic breast conditions and breast cancer among women in Shanghai, China. Cancer Epidemiol Biomarkers Prev, 16, 2579-86.
  55. LaPensee EW, LaPensee CR, Fox S, et al (2010). Bisphenol A and estradiol are equipotent in antagonizing cisplatininduced cytotoxicity in breast cancer cells. Cancer Lett, 290, 167-73.
  56. Lapensee EW, Tuttle TR, Fox SR, et al (2009). Bisphenol A at low nanomolar doses confers chemoresistance in estrogen receptor-alpha-positive and -negative breast cancer cells. Environ Hlth Perspect, 117, 175-80.
  57. Lattrich C, Lubig J, Springwald A, et al (2011). Additive effects of trastuzumab and genistein on human breast cancer cells. Anticancer Drugs, 22, 253-61.
  58. Mahady GB, Parrot J, Lee C, et al (2003). Botanical dietary supplement use in peri- and postmenopausal women. Menopause, 10, 65-72.
  59. Mai Z, Blackburn GL, Zhou JR (2007). Soy phytochemicals synergistically enhance the preventive effect of tamoxifen on the growth of estrogen-dependent human breast carcinoma in mice. Carcinogenesis, 28, 1217-23.
  60. Maizlish N, Moses M (1990). Fieldworker exposure to pesticides. J Occup Med, 32, 90-4.
  61. Markey CM, Coombs MA, Sonnenschein C, et al (2003). Mammalian development in a changing environment: exposure to endocrine disruptors reveals the developmental plasticity of steroid-hormone target organs. Evol Dev, 5, 67-75.
  62. Markey CM, Luque EH, Munoz De Toro M, et al (2001). In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland. Biol Reprod, 65, 1215-23.
  63. Metzler M (1981). The metabolism of diethylstilbestrol. CRC Crit Rev Biochem, 10, 171-212.
  64. Molzberger AF, Vollmer G, Hertrampf T, et al (2012). In utero and postnatal exposure to isoflavones results in a reduced responsivity of the mammary gland towards estradiol. Mol Nutr Food Res, 56, 399-409.
  65. Guha N, Kwan ML, Quesenberry CP, et al (2009). Soy isoflavones and risk of cancer recurrence in a cohort of breast cancer survivors: the life after cancer epidemiology study. Breast Cancer Res Treat, 118, 395-405.
  66. Harner T, Shoeib M, Diamond M, et al (2004). Using passive air samplers to assess urban-rural trends for persistent organic pollutants. 1. Polychlorinated biphenyls and organochlorine pesticides. Environ Sci Technol, 38, 4474-83.
  67. Herbst AL, Ulfelder H, Poskanzer DC (1971). Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med, 284, 878-81.
  68. Hoover RN, Hyer M, Pfeiffer RM, et al (2011). Adverse health outcomes in women exposed in utero to diethylstilbestrol. N Engl J Med, 365, 1304-14.
  69. Hwang CS, Kwak HS, Lim HJ, et al (2006). Isoflavone metabolites and their in vitro dual functions: they can act as an estrogenic agonist or antagonist depending on the estrogen concentration. J Steroid Biochem Mol Biol, 101, 246-53.
  70. Ibarluzea Jm J, Fernandez MF, Santa-Marina L, et al (2004). Breast cancer risk and the combined effect of environmental estrogens. Cancer Causes Control, 15, 591-600.
  71. Iso T, Watanabe T, Iwamoto T, et al (2006). DNA damage caused by bisphenol A and estradiol through estrogenic activity. Biol Pharm Bull, 29, 206-10.
  72. Iwasaki M, Inoue M, Otani T, et al (2008). Plasma isoflavone level and subsequent risk of breast cancer among Japanese women: a nested case-control study from the Japan public health center-based prospective study group. J Clin Oncol, 26, 1677-83.
  73. Izzotti A, Kanitz S, D'Agostini F, et al (2009). Formation of adducts by bisphenol A, an endocrine disruptor, in DNA in vitro and in liver and mammary tissue of mice. Mutat Res, 679, 28-32.
  74. Izzotti A, Longobardi M, Cartiglia C, et al (2010). Pharmacological modulation of genome and proteome alterations in mice treated with the endocrine disruptor bisphenol A. Curr Cancer Drug Targets, 10, 147-54.
  75. Ju YH, Allred KF, Allred CD, et al (2006). Genistein stimulates growth of human breast cancer cells in a novel, postmenopausal animal model, with low plasma estradiol concentrations. Carcinogenesis, 27, 1292-9.
  76. Ju YH, Doerge DR, Allred KF, et al (2002). Dietary genistein negates the inhibitory effect of tamoxifen on growth of estrogen-dependent human breast cancer (MCF-7) cells implanted in athymic mice. Cancer Res, 62, 2474-7.
  77. Ju YH, Doerge DR, Woodling KA, et al (2008). Dietary genistein negates the inhibitory effect of letrozole on the growth of aromatase-expressing estrogen-dependent human breast cancer cells (MCF-7Ca) in vivo. Carcinogenesis, 29, 2162-8.
  78. Khan SA, Chatterton RT, Michel N, et al (2011). Soy isoflavone supplementation for breast cancer risk reduction: a randomized phase II trial. Cancer Prev Res (Phila), 5, 309-19.
  79. Darbre PD, Byford JR, Shaw LE, et al (2002). Oestrogenic activity of isobutylparaben in vitro and in vivo. J Appl Toxicol, 22, 219-26.
  80. Davis DL, Bradlow HL, Wolff M, et al (1993). Medical hypothesis: xenoestrogens as preventable causes of breast cancer. Environ Hlth Perspect, 101, 372-7.
  81. Dey S, Soliman AS, Hablas A, et al (2010). Urban-rural differences in breast cancer incidence in Egypt (1999-2006). Breast, 19, 417-23.
  82. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, et al (2009). Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev, 30, 293-342.
  83. Dong JY, Qin LQ (2011). Soy isoflavones consumption and risk of breast cancer incidence or recurrence: a meta-analysis of prospective studies. Breast Cancer Res Treat, 125, 315-23.
  84. Dong S, Terasaka S, Kiyama R (2011). Bisphenol A induces a rapid activation of Erk1/2 through GPR30 in human breast cancer cells. Environ Pollut, 159, 212-8.
  85. Du M, Yang X, Hartman JA, et al (2012). Low-dose dietary genistein negates the therapeutic effect of tamoxifen in athymic nude mice. Carcinogenesis, 33, 895-901.
  86. Durando M, Kass L, Perdomo V, et al (2011). Prenatal exposure to bisphenol A promotes angiogenesis and alters steroidmediated responses in the mammary glands of cycling rats. J Steroid Biochem Mol Biol, 127, 35-43.
  87. Durando M, Kass L, Piva J, et al (2007). Prenatal bisphenol A exposure induces preneoplastic lesions in the mammary gland in Wistar rats. Environ Hlth Perspect, 115, 80-6.
  88. Ekbom A, Trichopoulos D, Adami HO, et al (1992). Evidence of prenatal influences on breast cancer risk. Lancet, 340, 1015-8.
  89. El Saghir NS, Khalil MK, Eid T, et al (2007). Trends in epidemiology and management of breast cancer in developing Arab countries: a literature and registry analysis. Int J Surg, 5, 225-33.
  90. Goodman MT, Shvetsov YB, Wilkens LR, et al (2009). Urinary phytoestrogen excretion and postmenopausal breast cancer risk: the multiethnic cohort study. Cancer Prev Res (Phila), 2, 887-94.
  91. Gould JC, Leonard LS, Maness SC, et al (1998). Bisphenol A interacts with the estrogen receptor alpha in a distinct manner from estradiol. Mol Cell Endocrinol, 142, 203-14.
  92. Grace PB, Taylor JI, Low YL, et al (2004). Phytoestrogen concentrations in serum and spot urine as biomarkers for dietary phytoestrogen intake and their relation to breast cancer risk in European prospective investigation of cancer and nutrition-norfolk. Cancer Epidemiol Biomarkers Prev, 13, 698-708.
  93. Gray J, Evans N, Taylor B, et al (2009). State of the evidence: the connection between breast cancer and the environment. Int J Occup Environ Hlth, 15, 43-78.
  94. Greenberg ER, Barnes AB, Resseguie L, et al (1984). Breast cancer in mothers given diethylstilbestrol in pregnancy. N Engl J Med, 311, 1393-8.
  95. Allred CD, Ju YH, Allred KF, et al (2001b). Dietary genistin stimulates growth of estrogen-dependent breast cancer tumors similar to that observed with genistein. Carcinogenesis, 22, 1667-73.
  96. Andres S, Abraham K, Appel KE, et al (2011). Risks and benefits of dietary isoflavones for cancer. Crit Rev Toxicol, 41, 463-506.
  97. Barker DJ, Eriksson JG, Forsen T, et al (2002). Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol, 31, 1235-9.
  98. Becker K, Goen T, Seiwert M, et al (2009). GerES IV: phthalate metabolites and bisphenol A in urine of German children. Int J Hyg Environ Hlth, 212, 685-92.
  99. Bosviel R, Dumollard E, Dechelotte P, et al (2012). Can soy phytoestrogens decrease DNA methylation in BRCA1 and BRCA2 oncosuppressor genes in breast cancer? Omics, 16, 235-44.
  100. Boylan ES, Calhoon RE (1979). Mammary tumorigenesis in the rat following prenatal exposure to diethylstilbestrol and postnatal treatment with 7, 12-dimethylbenz[a]anthracene. J Toxicol Environ Hlth, 5, 1059-71.
  101. Bray F, McCarron P, Parkin DM (2004). The changing global patterns of female breast cancer incidence and mortality. Breast Cancer Res, 6, 229-39.
  102. Brede C, Fjeldal P, Skjevrak I, et al (2003). Increased migration levels of bisphenol A from polycarbonate baby bottles after dishwashing, boiling and brushing. Food Addit Contam, 20, 684-9.
  103. Byford JR, Shaw LE, Drew MG, et al (2002). Oestrogenic activity of parabens in MCF7 human breast cancer cells. J Steroid Biochem Mol Biol, 80, 49-60.
  104. Calafat AM, Ye X, Wong LY, et al (2008). Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003- 2004. Environ Hlth Perspect, 116, 39-44.
  105. Canderelli R, Leccesse LA, Miller NL, et al (2007). Benefits of hormone replacement therapy in postmenopausal women. J Am Acad Nurse Pract, 19, 635-41.
  106. Chang EC, Charn TH, Park SH, et al (2008). Estrogen Receptors alpha and beta as determinants of gene expression: influence of ligand, dose, and chromatin binding. Mol Endocrinol, 22, 1032-43.
  107. Cohn BA, Wolff MS, Cirillo PM, et al (2007). DDT and breast cancer in young women: new data on the significance of age at exposure. Environ Hlth Perspect, 115, 1406-14.
  108. Crain DA, Eriksen M, Iguchi T, et al (2007). An ecological assessment of bisphenol-A: evidence from comparative biology. Reprod Toxicol, 24, 225-39.
  109. Cravedi JP, Zalko D, Savouret JF, et al (2007). [The concept of endocrine disruption and human health]. Med Sci (Paris), 23, 198-204.
  110. Crews D, Willingham E, Skipper JK (2000). Endocrine disruptors: present issues, future directions. Q Rev Biol, 75, 243-60.
  111. Crisp TM, Clegg ED, Cooper RL, et al (1998). Environmental endocrine disruption: an effects assessment and analysis. Environ Hlth Perspect, 106, 11-56.
  112. Abdel-Rahman WM (2008). Genomic instability and carcinogenesis: an update. Curr Genomics, 9, 535-41.
  113. Adams NR (1995). Detection of the effects of phytoestrogens on sheep and cattle. J Anim Sci, 73, 1509-15.
  114. Allred CD, Allred KF, Ju YH, et al (2001a). Soy diets containing varying amounts of genistein stimulate growth of estrogendependent (MCF-7) tumors in a dose-dependent manner. Cancer Res, 61, 5045-50.

Cited by

  1. Tumorigenic Effects of Endocrine-disrupting Chemicals are Alleviated by Licorice (Glycyrrhiza glabra) Root Extract through Suppression of AhR Expression in Mammalian Cells vol.15, pp.12, 2014,
  2. Tumorigenic Effects of Endocrine-Disrupting Chemicals are Alleviated by Licorice (Glycyrrhiza glabra) Root Extract through Suppression of AhR Expression in Mammalian Cells vol.15, pp.13, 2014,
  3. Incidence and Mortality of Female Breast Cancer in Jiangsu, China vol.15, pp.6, 2014,
  4. In Vitro Evaluation of the Effects of Zearalenone and α-Zearalenol on MCF-7 and MDA-MB-468 Cell Lines of Human Breast Cancer vol.3, pp.4, 2015,
  5. Role of Endocrine-Disrupting Engineered Nanomaterials in the Pathogenesis of Type 2 Diabetes Mellitus vol.9, pp.1664-2392, 2018,
  6. Stop eating plastic, molecular signaling of bisphenol A in breast cancer vol.25, pp.24, 2018,