DOI QR코드

DOI QR Code

3D Microwave Breast Imaging Based on Multistatic Radar Concept System

  • Simonov, Nikolai (Electromagnetic Engineering Research Team, Radio Technology Research Department, ETRI) ;
  • Jeon, Soon-Ik (Electromagnetic Engineering Research Team, Radio Technology Research Department, ETRI) ;
  • Son, Seong-Ho (Electromagnetic Engineering Research Team, Radio Technology Research Department, ETRI) ;
  • Lee, Jong-Moon (Electromagnetic Engineering Research Team, Radio Technology Research Department, ETRI) ;
  • Kim, Hyuk-Je (Electromagnetic Engineering Research Team, Radio Technology Research Department, ETRI)
  • Received : 2011.09.26
  • Accepted : 2012.02.02
  • Published : 2012.03.31

Abstract

Microwave imaging (MI) is one of the most promising and attractive new techniques for earlier breast cancer detection. Microwave tomography (MT) realizes configuration of a multistatic multiple-input multiple-output system and reconstructs dielectric properties of the breast by solving a nonlinear inversion scattering problem. In this paper, we describe ETRI 3D MT system with 3D MI reconstruction program and demonstrate its robustness through some examples of the image reconstruction.

Keywords

Microwave Tomography;Cancer Detection;Electromagnetic Scattering Inverse Problem;Image Reconstruction;Microwave Imaging

Acknowledgement

Supported by : KCA (Korea Communications Agency)

References

  1. M. Garcia, A. Jemal, E. M. Ward, M. M. Center, Y. Hao, R. L. Siegel, and M. J. Thun, Global Cancer Facts and Figures, Atlanta, GA: American Cancer Society, 2007.
  2. P. M. Meaney, K. D. Paulsen, B. W. Pogue, and M. I. Miga, "Microwave image reconstruction utilizing log-magnitude and unwrapped phase to improve high-contrast object recovery," IEEE Trans. Medical Imaging, vol. 20, no. 2, pp. 104-116, Feb. 2001. https://doi.org/10.1109/42.913177
  3. Q. Fang, Computational Methods for Microwave Medical Imaging, Ph.D. Thesis, Dartmouth College, Hanover, Dec. 2004.
  4. I. Hieda, K. C. Nam, "2D image construction from low resolution response of a new non-invasive measurement for medical application," ETRI J., vol. 27, no. 4, pp. 385-393, 2005. https://doi.org/10.4218/etrij.05.0104.0013
  5. S. Y. Semenov, A. E. Bulyshev, A. Abubakar, V. G. Posukh, Y. E. Sizov, A. E. Souvorov, P. Van den Berg, and T. Williams, "Microwave tomographic imaging of the high dielectric-contrast objects using different image reconstruction approaches," IEEE Trans. Microw. Theory Tech., vol. 53, no. 7, pp. 2284-2294, 2005. https://doi.org/10.1109/TMTT.2005.850459
  6. Q. Fang, P. M. Meaney, and K. D. Paulsen, "Microwave image reconstruction of tissue property dispersion characteristics utilizing multiple-frequency information," IEEE Trans. Microw. Theory Tech., vol. 52, no. 8, pp. 1866-1875, Aug. 2004. https://doi.org/10.1109/TMTT.2004.832014
  7. E. J. Bond, Xu Li, S. C. Hagness, and B. D. Van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Trans. Antennas Propag., vol. 51, no. 8, pp. 1690-1705, Aug. 2003. https://doi.org/10.1109/TAP.2003.815446
  8. J. M. Sill, E. C. Fear, "Tissue sensing adaptive radar for breast cancer detection-experimental investigation of simple tumor models," IEEE Trans. Microw. Theory Tech., vol. 53, no. 11, pp. 3312-3319, Nov. 2005. https://doi.org/10.1109/TMTT.2005.857330
  9. Yao Xie, S. K. Davis, M. Lazebnik, F. Kelcz, B. D. Van Veen, and S. C. Hagness, "Multistatic adaptive microwave imaging for early breast cancer detection," IEEE Trans. Biomed. Eng., vol. 53, no. 8, pp. 1647-1657, Aug. 2006. https://doi.org/10.1109/TBME.2006.878058
  10. E. Zastrow, S. K. Davis, M. Lazebnik, F. Kelcz, B. D. Van Veen, and S. C. Hagness, "Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast," IEEE Trans. Biomed. Eng., vol. 55, no. 12, pp. 2792-2800, Dec. 2008. https://doi.org/10.1109/TBME.2008.2002130
  11. D. W. Winters, J. D. Shea, P. Kosmas, B. D. Van Veen, and S. C. Hagness, "Three-dimensional microwave breast imaging: Dispersive dielectric properties estimation using patient-specific basis functions," IEEE Trans. Med. Eng., vol. 28, no. 7, pp. 969-981, Jul. 2009. https://doi.org/10.1109/TMI.2008.2008959
  12. J. D. Shea, P. Kosmas, S. C. Hagness, and B. D. Van Veen, "Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple- frequency inverse scattering technique," Medical Physics, vol. 37, no. 8, pp. 4210-4226, Aug. 2010. https://doi.org/10.1118/1.3443569
  13. T. Rubæk, P. M. Meaney, P. Meincke, and K. D. Paulsen, "Nonlinear microwave imaging for breastcancer screening using gauss-newton's method and the CGLS inversion algorithm," IEEE IEEE Trans. Antennas Propag., vol. 55, no. 8, pp. 2320-2331, Aug. 2007. https://doi.org/10.1109/TAP.2007.901993
  14. P. M. Meaney, M. W. Fanning, T. Raynolds, C. J. Fox, Q. Fang, Ch. A. Kogel, S. P. Poplack, and K. D. Paulsen, "Initial clinical experience with microwave breast imaging in women with normal mammography," Academic Radiology, vol. 14, no. 2, pp. 207-218, Feb. 2007. https://doi.org/10.1016/j.acra.2006.10.016
  15. Q. Fang, P. M. Meaney, and K. D. Paulsen, "Viable three-dimensional medical microwave tomography: Theory and numerical experiments," IEEE Trans. Antennas Propag., vol. 58, no. 2, pp. 449-458, Feb. 2010. https://doi.org/10.1109/TAP.2009.2037691
  16. Williams, B. Nair, A. Pavlovsky, V. Posukh, and M. Quinn, "Microwave tomography of extremities: 1. Dedicated 2D system and physiological signatures," Phys. Med. Biol. vol. 56, pp. 2005-2017, 2011. https://doi.org/10.1088/0031-9155/56/7/006
  17. S. Semenov, J. Kellam, Y. Sizov, A. Nazarov, Th. Williams, B. Nair, A. Pavlovsky, V. Posukh, and M. Quinn, "Microwave tomography of extremities: 2. Functional fused imaging of flow reduction and simulated compartment syndrome," Phys. Med. Biol. vol. 56, pp. 2019-2030, 2011. https://doi.org/10.1088/0031-9155/56/7/007
  18. M. Klemm, J. A. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, and R. Benjamin, "Microwave radar- based differential breast cancer imaging: imaging in homogeneous breast phantoms and low contrast scenarios," IEEE Trans. Antennas Propag., vol. 58, no. 7, pp. 2237-2344, Jul. 2010.
  19. Y. Chen, I. J. Craddock, P. Kosmas, M. Ghavami, and P. Rapajic, "Multiple-input multiple-output radar for lesion classification in ultrawideband breast imaging," IEEE Journ. of Select. Top. in Sign. Proc., vol. 4, no. 1, pp. 187-201, Feb. 2010. https://doi.org/10.1109/JSTSP.2009.2038975
  20. T. Henriksson, M. Klemm, D. Gibbins, J. Leendertz, T. Horseman, A. W. Preece, R. Benjamin, and I. J. Craddock, "Clinical trials of a multistatic UWB radar for breast imaging," Antennas Propag. Conf. (LAPC), Loughborough, pp. 1-4 , Nov. 2011.
  21. C. Gilmore, P. Mojabi, A. Zakaria, M. Ostadrahimi, C. Kaye, S. Noghanian, L. Shafai, S. Pistorius, and J. LoVetri, "A wideband microwave tomography system with a novel frequency selection procedure," IEEE Trans. Biomed. Eng., vol. 57, no. 4, pp. 894-904, Apr. 2010. https://doi.org/10.1109/TBME.2009.2036372
  22. C. Gilmore, P. Mojabi, A. Zakaria, S. Pistorius, and J. LoVetri, "On super-resolution with an experimental microwave tomography system," IEEE Antennas Wireless Lett., vol. 9, pp. 393-396, Apr. 2010. https://doi.org/10.1109/LAWP.2010.2049471
  23. M. Ostadrahimi, P. Mojabi, S. Noghanian, L. Shafai, S. Pistorius, and Joe LoVetri, "A novel microwave tomography system based on the scattering probe technique," IEEE Trans. Instrum. Meas., vol. 61, no. 2, pp. 894-904, Feb. 2012.
  24. A. Fhager, M. Gustaffson, and S. Nordebo, "Image reconstruction in microwave tomography using a dielectric debye model," IEEE Trans. Biomed. Eng., vol. 59, no. 1, pp. 156-166, Jun. 2012. https://doi.org/10.1109/TBME.2011.2168606
  25. R. Halter, A. Hartov, and K. Paulsen, "A broadband high-frequency electrical impedance tomography system for breast imaging," IEEE Trans. Biomed. Eng., vol. 55, no. 2, pp. 650-659, Feb. 2008. https://doi.org/10.1109/TBME.2007.903516
  26. T. J. Cui, W. C. Chew, X. X. Yin, and W. Hong, "Study of resolution and super resolution in electromagnetic imaging for half-space problems," IEEE Trans. Antennas Propag., vol. 52, no. 6, pp. 1398-1411, Jun. 2004. https://doi.org/10.1109/TAP.2004.829847
  27. F. Chen, W. Chew, "Experimental verification of super resolution in nonlinear inverse scattering," Appl. Phys. Lett., vol. 72, no. 23, pp. 3080-3082, 1998. https://doi.org/10.1063/1.121547
  28. S. Semenov, R. Svenson, A. Bulyshev, A. Souvorov, A. Nazarov, Y. Sizov, V. Posukh, A. Pavlovsky, P. Repin, and G. Tatsis, "Spatial resolution of microwave tomography for detection of myocardial ischemia and infarction-experimental study on twodimensional models," IEEE Trans. Microw. Theory Tech., vol. 48, no. 4, pp. 538-544, Apr. 2000. https://doi.org/10.1109/22.842025
  29. S. H. Son, N. Simonov, H. J. Kim, J. M. Lee, and S. I. Jeon, "Preclinical prototype development of a microwave tomography system for breast cancer detection," ETRI Journal, vol. 32, no. 6, pp. 901- 910, Dec. 2010. https://doi.org/10.4218/etrij.10.0109.0626

Cited by

  1. Design and preliminary experiments of a precision microwave tomography system vol.57, pp.10, 2015, https://doi.org/10.1002/mop.29347
  2. THREE-DIMENSIONAL FAR-FIELD HOLOGRAPHIC MICROWAVE IMAGING: AN EXPERIMENTAL INVESTIGATION OF DIELECTRIC OBJECT vol.61, 2014, https://doi.org/10.2528/PIERB14101502
  3. Experimental Measurement System for 3-6 GHz Microwave Breast Tomography vol.15, pp.4, 2015, https://doi.org/10.5515/JKIEES.2015.15.4.250
  4. Recent Advances in Microwave Imaging for Breast Cancer Detection vol.2016, 2016, https://doi.org/10.1155/2016/5054912
  5. Analysis of Microwave-Induced Thermoacoustic Signal Generation Using Computer Simulation vol.16, pp.1, 2016, https://doi.org/10.5515/JKIEES.2016.16.1.1
  6. Skin artifact removal technique for breast cancer radar detection vol.51, pp.6, 2016, https://doi.org/10.1002/2016RS006011
  7. Temperature influence of matching liquid in a microwave tomography platform system vol.56, pp.12, 2014, https://doi.org/10.1002/mop.28748
  8. Investigation of Phase Singularity Problem in Microwave Breast Tomography vol.14, pp.4, 2014, https://doi.org/10.5515/JKIEES.2014.14.4.332
  9. Sensing probe for 3–6 GHz microwave imaging systems vol.50, pp.15, 2014, https://doi.org/10.1049/el.2014.1923
  10. Advanced Fast 3-D Electromagnetic Solver for Microwave Tomography Imaging vol.36, pp.10, 2017, https://doi.org/10.1109/TMI.2017.2712800
  11. Analysis of the Super-Resolution Effect on Microwave Tomography vol.53, pp.12, 2018, https://doi.org/10.1029/2017RS006404