Seasonal Variation of Taxonomic Composition and Standing Crop of Phytoplankton in the Chunggye Bay

청계만 식물플랑크톤의 종조성과 개체수의 계절적 변동

  • Jeong, Byung-Kwan (Division of Ocean System Engineering, Mokpo Maritime National University) ;
  • Ji, Sung (Division of Ocean System Engineering, Mokpo Maritime National University) ;
  • Shin, Yong-Sik (Division of Ocean System Engineering, Mokpo Maritime National University)
  • 정병관 (목포해양대학교 해양시스템공학부) ;
  • 지성 (목포해양대학교 해양시스템공학부) ;
  • 신용식 (목포해양대학교 해양시스템공학부)
  • Received : 2011.11.11
  • Accepted : 2012.02.01
  • Published : 2012.03.31


Three embankments, namely Changpo, Bokkil and Guil, in Chunggye Bay were investigated to assess the influence of environmental changes to phytoplankton size structure, distribution of species and standing crops. Three stations was sampled near at each embankment in Nov. 2006, Feb. 2007, May 2007 and Aug. Phytoplankton were classified into net-size (>20${\mu}m$) and nano-size (<20${\mu}m$). In summer, the freshwater discharge seemed to have influence in the decrease of salinity and in the increase of turbidity, ammonium and phosphorus concentrations. Chl a concentration and phytoplankton abundance in Feb. 2007 were observed to be generally higher in all stations compared to other periods. Net-size phytoplankton was observed to be higher in Feb. 2007 and May 2007 compared to nano-sized phytoplankton. However, there was shift in phytoplankton composition in Nov. 2006 and Aug. 2007. Phytoplankton under seven class (Bacillariophyceae, Chlorophyceae, Chrysophyceae, Cryptophyceae, Cyanophyceae, Dinophyceae, Euglenophyceae) was identified during the study period. It was found out that the major phytoplankton class was Bacillariophyceae. Phytoplankton was more diverse in autumn compared to any other season. Cyanophyceae was increased in summer. In rainy season, change in physical factors (salinity, transparency) seemed to have more influence on phytoplankton growth compared to inorganic nutrients.


Phytoplankton;Size structure;Chunggye bay;Phytoplankton community


  1. 김용재, 김명운, 김상종, 1998, 한강 중하류 수계에서 식물플랑크톤 군집의 생태학적 특성, 조류학회지, 13(3), 331-338.
  2. 권기영, 문창호, 이재성, 양성렬, 박미옥, 이필용, 2004, 섬진강 하구역에서 영양염의 하구내 거동과 플럭스, 한국해양학회지, 9, 153-162.
  3. 문창호, 최혜지, 1991, 낙동강 하구 환경특성 및 식물플랑크톤의 군집구주에 관한 연구, 한국해양학회지, 26(2), 144-154.
  4. 박경양, 1994, 복길 간척지 주변 해역의 식물플랑크톤의 군집에 관한 연구, Bulletin of Institute of Littoral Environment, 11, 81-90.
  5. 송태곤, 1997, 전남 무안군의 4개 소하천의 저서무척추동물 및 담수어류상, Bulletin of Institute of Littoral Environment, 14, 27-34.
  6. 심재형, 1994, 한국동식물도감 제34권 식물편 해양식물 플랑크톤, 141.
  7. 양성렬, 송환석, 문창호, 권기영, 양한섭, 2001, 낙동강 하구역의 담수유입에 따른 해양환경 및 일차생산력 변화, 한국조류학회지, 16(2), 165-177.
  8. 이상현, 신용식, 양성렬, 박철, 2005, 아산만 식물플랑크톤의 계절별 군집 분포 특성, Ocean and Polar Research, 27(2), 149-159.
  9. 이영식, 이재성, 정래홍, 김성수, 고우진, 김귀영, 박종수, 2001, 광양만에서 식물플랑크톤 제한영양염, 한국해양학회지(바다), 6, 201-210.
  10. 조은섭, 2010, 목포항 주변해역의 수질 및 식물플랑크톤 변동 특성, 한국환경과학회지, 19(11), 1323-1336.
  11. 지 성, 신용식, 서호영, 2008, 청계만 식물플랑크톤 크기 구조의 계절적 변동, 한국해양학회지, 13(4), 333-341.
  12. Amstrong, R. A., 1994, Grazing limitation and nutrient limitation in marine ecosystems: steady state solution of an ecosystem model with multiple food chains, Limnol. Oceanogr, 39(3), 597-608.
  13. Arruda, J. A., Marzolf, G. R., Faulk, R. T., 1983, The role of suspended sediments in the nutrition of zooplankton in the turbid reservoirs, Ecology, 64, 1225-1235.
  14. Bold, H. C., Wynne, M. J., 1985, Introduction to the algae, 2nd Ed., Prentice-Hall Inc., Englwood Cliffs, New Jersey, 720.
  15. Brook, A. J., 1965, Planktonic Algae as indicators of lake types, with special reference to the desmidaceae, Limnol. Oceanogr, 10, 403-411.
  16. Caraco, N. F., Cole, J. J., Raymond, P. A., Strayer, D. L., Pace, M .L., Findlay, S. E. G., Fisher, D. T., 1997, Zebramussel invasion in a large, turbid river: Phytoplankton response to increased grazing, Ecol., 78(2), 599-602.
  17. Carpenter, S. R., Kitchell, J. F., Hodgson, J. R., Cochran, P. A., Elser, J. J., Elser, M. M., Lodge, D. M., Kretchmer, X., He, X., von Ende, C. N., 1987, Regulation of lake primary productivity by food web structure, Ecol., 68, 1863-1876.
  18. Chapman, V. J., 1968, The algae, Macmillan London, Melbourne, Toronto St Martis Press, New York, 472.
  19. Dodge, J. D., 1975, The fine structure of algal cells, Academic Press, Inc. London, 261.
  20. Dortch, Q., Whitledge, T. E., 1992, Does nitrogen or silicon limit phytoplankton production in the Mississipi River plume and nearby regions?, Continental Shelf Research, 12, 1293-1309.
  21. Fisher, T. R., Harding, L. W., Jr., Stanley, D. W., Ward, L. G., 1988, Phytoplankton, nutrient and turbidity in the Chesapeake, Delaware and Hudson estuaries, Mar. Ecol Prog. Ser., 27, 61-93.
  22. Hart, R. C., 1998, Zooplankton feeding rates in relation to suspended sediment content:Potential influence on community structure in a turbid reservoir, Freshwater Biol., 19, 123-139.
  23. Hellawell, J. M., 1986, Biological indicators of freshwater pollution and environmental management, Elsevier Applied Science Publishers, 546.
  24. James, A., 1979, The value of biological indicators in relation to other parameter of water quality, in: James, A. and Evison, L. (eds.), Biological indicators of water quality, Chapter 1. John Wiley and Sons, USA.
  25. Justic, D., Rabalais, N. N., Turner, R. E., Dortch, Q., 1995, Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences, Estuar. Coast. Shelf. Sci., 40, 339-356.
  26. Kirk, K. L., 1991, Suspended clay reduces Daphnia feeding behavioural mechanism, Freshwater Biol., 25, 357-365.
  27. Kivi, K., Kaitala, S., Kuosa, H., Kuparinen, J., Leskinen, E., Lignell, R., Marcussen, B., Tamminen, T., 1993, Nutrient limitation and grazing control of the Baltic plankton community during annual succession, Limnol. Oceanogr., 38(5), 893-905.
  28. Michaels, A. E., Silver, M. W., 1988, Primary production, sinking fluxes and the microbial food web, Deep-Sea Res., 35, 473-490.
  29. Nybbaken, J. W., 1997, Marine biology: An ecological approach, Wesley Educational Publishers Inc., 304-308.
  30. Palmer, C. M., Adams, S., 1977, Algae and water pollution, Municipal environmental research and development, U.S. EPA, Cincinnati, Ohio, USA.
  31. Parsons, T. T., Maita, Y., Lalli, C. M., 1984, A manual of chemical and biological methods for seawater analysis, Peramon Press, New York, 22-25.
  32. Raymont, J. E. C., 1980, Plankton and productivity in the ocean, 2nd, Phytoplankton, Peramon. Press. Oxford, 330.
  33. Ryther, J. H., 1969, Photosynthesis and fish production in the sea, Sci., 166, 72-76.
  34. Schoeman, F. R., 1973, A systematic and ecological study of the diatom flora of Lesotho with special reference to the water quality, 365, in: James, A. and Evison, L. (eds.), Biological indicators of water quality, John Wiley and Sons, USA.
  35. Sin, Y. S., Wetzel, R. L., Anderson, I. C., 1999, Spatial and temporal characteristics of nutrient and phytoplankton dynamics in the YORK River, Virginia: analyses of long-data, Estuarine., 22, 260-275.
  36. UNESCO, 1978, Water quality surveys, UNESCO., WHO, 350.
  37. Walsh, J. J., 1976, Herbivory as a factor in patterns of nutrient utilization in the sea, Limnol. Oceanogr., 21, 1-13.
  38. Watanabe, T., 1962, On the Biotic. Index of Water Pollution based upon the species Number of Bacillariophyceae in the Tokoro River in Hokkaido (in Japanese), Japan J. Ecol., 12, 216-222.
  39. Whitton, B. A., 1979, Plants as indicators of river water quality, in : James, A. and Evison, L. (eds.), Biological indicators of water quality, Chapter. 5., John Wiley and Sons, USA.
  40. Zurek, R., 1980, The effects of suspended materials on the zooplankton. I Natural environments, Acta Hydrobiol., 22, 449-471.