DOI QR코드

DOI QR Code

Analysis of Spatial Variability of Local Slope by Means of Geographic Information System

지리정보체계를 이용한 국부경사의 공간적 변동성 해석

  • Kim, Joo-Cheol (Korea Institute of Water and Environment, Korea Water Resources Corporation) ;
  • Choi, Yong-Joon (Korea Institute of Water and Environment, Korea Water Resources Corporation) ;
  • Yoon, Yeo-Jin (Department of Civil & Environment Engineering, Konyang University)
  • 김주철 (한국수자원공사 K-water연구원) ;
  • 최용준 (한국수자원공사 K-water연구원) ;
  • 윤여진 (건양대학교 건설환경공학과)
  • Received : 2011.10.31
  • Accepted : 2012.02.17
  • Published : 2012.03.31

Abstract

Slope is the geographic factor reflecting the 3-dimensional features of basin and it can be considered as the important geomorphological factor which governs the morphology of basin and the dynamics of water movement. In this study the approach to the 3-dimensional structures of basin is attempted with statistical analysis of local slope which can be defined and measured in easy and objective manner by means of DEM. As a result local slope is confirmed to be a highly variable spatial factor in basin. And distribution map of local slope based on spatial autocorrelation length in this study would be a useful tool in the further research of hydrology and geomorphology.

Keywords

DEM;Local slope;Spatial variability;Distribution map

References

  1. 김주철, 2004, 선형계로 간주한 강우-유출 수문계 대표순간단위도의 추정, 박사학위논문, 충남대학교.
  2. 김주철, 김재한, 2007a, DEM을 이용한 수로망의 형태학적 표현, 한국수자원학회논문집, 40(4), 287-297.
  3. 김주철, 김재한, 2007b, 배수밀도와 수원유역의 기하학적 특성을 기반으로 한 배수구조에 대한 해석, 한국수자원학회논문집, 40(5), 373-382. https://doi.org/10.3741/JKWRA.2007.40.5.373
  4. 최용준,김연수, 이기하, 김주철, 2010, 결측강우보완방법에 따른 분포형 유출모형의 적용성 검증, 한국환경과학회지, 19(12), 1375-1384. https://doi.org/10.5322/JES.2010.19.12.1375
  5. 최윤석, 김경탁, 이진희, 2008, 유한체적법을 이용한 격자기반의 분포형 강우-유출 모형 개발, 한국수자원학회지, 41(9), 895-905. https://doi.org/10.3741/JKWRA.2008.41.9.895
  6. 최윤호, 최용준, 김주철, 정관수, 2011, 유역의 동수역학적 특성을 고려한 직접유출수문곡선 산정, 한국방재학회논문집, 11(3), 157-163.
  7. Flint, J. J., 1974, Stream gradient as a function of order, magnitude and discharge, Water Resour. Res., 10(5), 969-973. https://doi.org/10.1029/WR010i005p00969
  8. Horton, R. E., 1932, Drainage basin characteristics, Transactions of American Geophysical Union, 13, 348-352.
  9. Horton, R. E., 1945, Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology, Geological Society of America Bull., 56, 275-370. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO
  10. Ijjasz-Vasquez, E. J., Bras, R. L., 1995, Scaling regimes of local slope versus contributing area in digital elevation models, Geomorphology, 12, 299-311. https://doi.org/10.1016/0169-555X(95)00012-T
  11. La Barbera, P., Rosso, R., 1989, On the Fractal dimension of stream networks, Water Resour. Res., 25(4), 735-741. https://doi.org/10.1029/WR025i004p00735
  12. Mandelbrot, B. B., 1982, "The Fractal geometry of nature", W. H. Freeman, New York.
  13. Montgomery, D. R., Foufoula-Georgiou, E., 1993, Channel network source representation using digital elevation models, Water Resour. Res., 29(12), 3925-3934. https://doi.org/10.1029/93WR02463
  14. Moussa, R., 2003, On morphometric properties of basins, scale effects and hydrological response, Hydrological Processes, 17, 33-58. https://doi.org/10.1002/hyp.1114
  15. Rodriguez-Iturbe, I., Valdes, J. B., 1979, The geomorphologic structure of hydrologic response, Water Resour. Res., 15(6), 1409-1420. https://doi.org/10.1029/WR015i006p01409
  16. Rodriguez-Iturbe, I., Rinaldo, A., 2003, "Fractal river basins, Chance and self-organization", Cambridge.
  17. Shreve, R. L., 1966, Statistical law of stream numbers, J. Geology, 74, 17-37. https://doi.org/10.1086/627137
  18. Smart, J. S., 1972, Channel Networks, Advances in Hydroscience, 8, 305-346. https://doi.org/10.1016/B978-0-12-021808-0.50011-5
  19. Strahler, A. N., 1964, "Quantitative geomorphology of drainage basins and channel networks", 4.39-4.76, In: Handbook of Applied Hydrology. McGraw-Hill.
  20. Tarboton, D. G., 2003,"Terrain Analysis Using Digital Elevation Models in Hydrology", 23rd ESRI International Users Conference, San Diego, California.
  21. Tarboton, D. G., Bras, R. L., Rodriguez-Iturbe, I., 1988, The Fractal nature of river networks, Water Resour. Res., 24(8), 1317-1322. https://doi.org/10.1029/WR024i008p01317
  22. Tarboton, D. G., Bras, R. L., Rodriguez-Iturbe, I., 1992, A physical basis for drainage density, Geomorphology, 5, 59-76. https://doi.org/10.1016/0169-555X(92)90058-V
  23. Tucker, G. E., Catani, F., Rinaldo, A., Bras, R. L., 2001, Statistical analysis of drainage density from digital terrain data, Geomorphology, 36, 187-202. https://doi.org/10.1016/S0169-555X(00)00056-8