Population ecology of Palmaria palmata (Palmariales, Rhodophyta) from harvested and non-harvested shores on Digby Neck, Nova Scotia, Canada

  • Garbary, David J. (Department of Biology, St. Francis Xavier University) ;
  • Beveridge, Leah F. (Department of Biology, St. Francis Xavier University) ;
  • Flynn, Andrea D. (Department of Biology, St. Francis Xavier University) ;
  • White, Katelyn L. (Department of Biology, St. Francis Xavier University)
  • Received : 2011.12.26
  • Accepted : 2012.02.29
  • Published : 2012.03.15


Population ecology of Palmaria palmata is described from the intertidal zone of Digby Neck and adjacent islands of Nova Scotia. The primary objectives were: to evaluate the difference in habitat specialization and population structure of P. palmata between harvest and non-harvest shores, and to characterize differences in thallus structure and frond sizes between epilithic and epiphytic populations. Harvest shores were gently sloping boulder fields with boulders typically about 0.5-1.0 m with dense cover of P. palmata on many of the rocks. Non-harvest shores (with or without P. palmata) consisted of boulders that were smaller or larger than harvest shores, or bedrock; when P. palmata was present on nonharvest sites it was typically epiphytic on other algae (e.g., Fucus spp., Mastocarpus stellatus, Devaleraea ramentacea). Harvestable epiphytic populations occurred only in high current areas. While there was little difference in average cover of P. palmata harvest and non-harvest shores ($31.2{\pm}13.7%$ vs. $19.4{\pm}7.3%$, mean ${\pm}$ standard deviation [SD]), the cover of P. palmata on harvest shores was highly skewed such that individual boulders often had >90% cover while adjacent rocks had little. Frond length of large fronds was greater on harvested shores, and mean frond density ($g\;m^{-2}$) was three times higher than the mean density on the non-harvested shores. Frond lengths of entire epiphytic and epilithic frond complements of 119 thalli from harvest beaches showed no difference in mean size of the largest fronds, and no difference in frond number per holdfast when epiphytic and epilithic thalli were compared.


  1. Anonymous. 1998. Periwinkle (Littorina littorea). DFO Science Stock Science Report C3-46. Fisheries and Oceans, Maritimes Regions. Available from: Accessed Feb 20, 2012.
  2. Bird, C. J. & Van der Meer, J. P. 1993. Systematics of economically important marine algae: a Canadian perspective. Can. J. Bot. 71:361-369.
  3. Browne, K. L. 2001. Mariculture of the edible red alga Palmaria palmata. Ph.D. Dissertation, Queens University of Belfast, Belfast, UK, 186 pp.
  4. Chopin, T. & Ugarte, R. 2006. The seaweed resources of eastern Canada. In Critchley, A. T., Ohno, M. & Largo, D. B. (Eds.) World Seaweed Resources: An Authoritative Reference System. DVD-ROM. ETI Bioinformatics Publishers, Amsterdam.
  5. Corey, P., Kim, J. K., Garbary, D. J., Prithiviraj, B. & Duston, J. 2011. Bioremediation potential of Chondrus crispus (Basin Head) and Palmaria palmata: effect of temperature and high nitrate on nutrient removal. J. Appl. Phycol. DOI: 10.1007/s10811-011-9734-8.
  6. Cornish, M. L. & Garbary, D. J. 2010. Antioxidants from macroalgae: potential applications in human health and nutrition. Algae 25:155-171.
  7. Edelstein, T., Chen, L. & McLachlan, J. 1970. Investigations of the marine algae of Nova Scotia. VIII. The flora of Digby neck Peninsula, Bay of Fundy. Can. J. Bot. 48:621-629.
  8. Faes, V. A. & Viejo, R. M. 2003. Structure and dynamics of a population of Palmaria palmata (Rhodophyta) in northern Spain. J. Phycol. 39:1038-1049.
  9. Ffrench, R. A. 1974. Rhodymenia palmata: an appraisal of the Dulse industry. Laboratory technical report. Atlantic Regional Laboratory, National Research Council Canada, Ottawa, 49 pp.
  10. Gabrielson, P. W. & Garbary, D. 1986. Systematics of red algae (Rhodophyta). CRC Crit. Rev. Plant Sci. 3:325-366.
  11. Galland-Irmouli, A. -V., Fleurence, J., Lamghari, R., Luçon, M., Rouxel, C., Barbaroux, O., Bronowicki, J. -P., Villaume, C. & Gueant, J. -L. 1999. Nutritional value of proteins from edible seaweed Palmaria palmata (Dulse). J. Nutr. Biochem. 10:353-359.
  12. Guiry, M. D. & Guiry, G. M. 2011. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from: Accessed Feb 20, 2012.
  13. Irvine, L. M. & Guiry, M. D. 1983. Palmariales. In Irvine, L. M. (Ed.) Seaweeds of the British Isles, Volume 1. Rhodophyta, Part 2A Cryptonemiales (sensu stricto), Palmariales, Rhodymeniales. British Museum (Natural History), London, pp. 65-74.
  14. Lukeman, R. L., Beveridge, L. F., Flynn, A. D. & Garbary, D. J. 2012. A mathematical model of the Palmaria palmata (Palmariales, Rhodophyta) harvest on Digby Neck, Nova Scotia. Algae 27:43-54.
  15. MacFarlane, C. I. 1964. The seaweed industry of the Maritime Provinces. In De Virville, A. D. & Feldman, J. (Eds.) Proc. 4th Int. Seaweed Symp., Pergamon Press, Oxford, pp. 414-419.
  16. MacFarlane, C. I. 1966. A report on some aspects of the seaweed industry in the Maritime Provinces of Canada. Industrial Development Service, Department of Fisheries of Canada, Ottawa, 24 pp.
  17. Martinez, B. & Rico, J. M. 2002. Seasonal variation of P content and major N pools in Palmaria palmata (Rhodophyta). J. Phycol. 38:1082-1089.
  18. Martínez, B., Viejo, R. M., Rico, J. M., Rødde, R. H., Faes, V. A., Oliveros, J. & Álvarez, D. 2006. Open sea cultivation of Palmaria palmata (Rhodophyta) on the northern Spanish coast. Aquaculture 254:376-387.
  19. Menge, B. A. & Sutherland, J. P. 1987. Community regulation: variation in disturbance, competition, and predation in relation to environmental stress and recruitment. Am. Nat. 130:730-757.
  20. Mishra, V. K., Temelli, F., Ooraikul, B., Shacklock, P. F. & Craigie, J. S. 1993. Lipids of the red alga, Palmaria palmata. Bot. Mar. 36:169-174.
  21. Morgan, K. C., Shacklock, P. F. & Simpson, F. J. 1980. Some aspects of the culture of Palmaria palmata in greenhouse tanks. Bot. Mar. 23:765-770.
  22. Morgan, K. C. & Simpson, F. J. 1981. The cultivation of Palmaria palmata: effect of light intensity and temperature on growth and chemical composition. Bot. Mar. 24:547-552.
  23. Novaczek, I. & McLachlan, J. 1989. Investigations of the marine algae of Nova Scotia XVII. Vertical and geographic distribution of marine algae on rocky shores of the Maritime Provinces. Proc. N. S. Inst. Sci. 38:91-143.
  24. Pang, S. J. & Lüning, K. 2006. Tank cultivation of the red alga Palmaria palmata: year-round induction of tetrasporangia, tetraspore release in darkness and mass cultivation of vegetative thalli. Aquaculture 252:20-30.
  25. Rhatigan, P. 2009. Irish seaweed kitchen: the comprehensive guide to healthy everyday cooking with seaweeds. Booklink, Hollywood, LA, 288 pp.
  26. Sousa, W. P. 1979. Disturbance in marine intertidal boulder fields: the nonequilibrium maintenance of species diversity. Ecology 60:1225-1239.
  27. South, G. R. & Hooper, R. G. 1980. A catalogue and atlas of the benthic marine algae of the Island of Newfoundland. Meml. Univ. Newfoundland Occas. Pap. Biol. 3:1-136.
  28. South, G. R., Tittley, I., Farnham, W. F. & Keats, D. W. 1988. A survey of the benthic marine algae of southwestern New Brunswick, Canada. Rhodora 90:419-451.
  29. Taylor, W. R. 1957. Marine algae of the northeastern coast of North America. University of Michigan Press, Ann Arbor, MI, 509 pp.
  30. Vadas, R. L., Beal, B. F., Wright, W. A., Emerson, S. & Nickl, S. 2004. Biomass and productivity of red and green algae in Cobscook Bay, Maine. Northeast. Nat. 11(Special Issue 2):163-196.
  31. Van der Meer, J. P. & Todd, E. R. 1980. The life history of Palmaria palmata in culture: a new type for the Rhodophyta. Can. J. Bot. 58:1250-1256.
  32. Wilson, J. S., Bird, C. J., McLachlan, J. & Taylor, A. R. A. 1979. An annotated checklist and distribution of benthic marine algae of the Bay of Fundy. Meml. Univ. Newfoundland Occas. Pap. Biol. 2:1-65.
  33. Yuan, Y. V., Westcott, N. D., Hu, C. & Kitts, D. D. 2009. Mycosporine-like amino acid composition of the edible red alga Palmaria palmata (Dulse) harvested from the west and east coasts of Grand Manan Island, New Brunswick. Food Chem. 112:321-328.

Cited by

  1. Marine finfish effluent bioremediation: Effects of stocking density and temperature on nitrogen removal capacity of Chondrus crispus and Palmaria palmata (Rhodophyta) vol.414-415, 2013,
  2. Intermittent aeration affects the bioremediation potential of two red algae cultured in finfish effluent vol.26, pp.5, 2014,
  3. Ascophyllum nodosum and its symbionts: XI. The epiphyte Vertebrata lanosa performs better photosynthetically when attached to Ascophyllum than when alone vol.29, pp.4, 2014,
  4. Life history interactions between the red algae Chondrus crispus (Gigartinales) and Grateloupia turuturu (Halymeniales) in a changing global environment vol.56, pp.2, 2017,
  5. Effects of commercial harvesting of intertidal macroalgae on ecosystem biodiversity and functioning vol.130, 2013,
  6. A mathematical model of the commercial harvest of Palmaria palmata (Palmariales, Rhodophyta) on Digby Neck, Nova Scotia, Canada vol.27, pp.1, 2012,
  7. Bioethanol production from the hydrolysate of Palmaria palmata using sulfuric acid and fermentation with brewer’s yeast vol.26, pp.1, 2014,
  8. Growth and nutrient uptake by Palmaria palmata integrated with Atlantic halibut in a land-based aquaculture system vol.29, pp.1, 2014,
  9. Evaluation of the in vitro biological activity of protein hydrolysates of the edible red alga, Palmaria palmata (dulse) harvested from the Gaspe coast and cultivated in tanks vol.28, pp.5, 2016,