Thermoluminescence Properties of Elpasolite Scintillation Single Crystal

엘파소라이트 섬광형 단결정의 열형광 특성

  • Received : 2011.12.20
  • Accepted : 2012.02.10
  • Published : 2012.02.29


In this paper, we determined the scintillation and thermoluminescence properties of $Cs_2NaCeBr_6$ elpasolite scintillation crystal. The emission spectrum of $Cs_2NaCeBr_6$ is located in the range of 300 ~ 450 nm, peaking at 377 nm and 400 nm. And, the fluorescence decay time of the crystal is composed two components. The fast component is 140 ns (94%), and the slow component is 880 ns (6%) of the crystal. The after-glow is caused by the electron and hole traps in the crystal lattices. We determined thermoluminescence parameters of the traps in the crystal. The determined activation energy(E), kinetic order and frequency factor of the traps are 0.67 eV, 1.71 and $2.51{\times}10^8s^{-1}$ respectively. In this crystal, re-combination rate is more dominant phenomenon than the re-trapping rate.


Supported by : 청주대학교


  1. R. Hofstadter, "Alkali halide scintillation counter", Phys. Rev., vol. 74, pp. 100-101, 1948.
  2. Marvin J. Weber, "Inorganic scintillators: today and tomorrow", J. Lumin., vol. 100, Issues 1-4, pp. 35-45, 2002.
  3. C.L. Melcher, "Perspectives on the future development of new scintillators", Nucl. Instr. Meth. in Phys. Res. Sec. A, vol. 537, Issues 1-2, pp. 6-14, 2005.
  4. Raffaele Scafe, et al., "Si-APD readout for $LaBr_3:Ce$ scintillator", Nucle. Instr. Meth. in Phys. Res. Sec. A, vol. 571, Issues 1-2, pp. 355-357, 2007.
  5. Vladimir Rusinov, "Scintillator strip detector with SiPM readout as detector for a TOF system", Nucl. Instr. Meth. in Phys. Res. Sec. A, vol. 623, Issue 1, pp. 380-381, 2010.
  6. P. Dorenbos, et al., "Scintillation properties of $RbGd_2Br_7:Ce^{3+}$ Crystals; Fast, efficient, and high density scintillators", Nucl. Instr. Meth., in Phys. Res. Sec. B, vol. 132, pp. 728-731, 1997.
  7. G. Ren, et al., "Scintillation characteristics of lutetium oxyorthosilicate ($Lu_2SiO_7:Ce$) crystals doped with cerium ions", Nucl. Instr. Meth., in Phys. Res. Sec. A, vol. 531, pp. 560-565, 2004.
  8. A. M. Srivastava, et al., "Luminescence of $LuCl_3:Pr$ under inter configurational (4f^2{\rightarrow}4f^15d^1$) and band gap excitations", Optical Mat., vol. 31, pp. 213-217, 2008.
  9. P. A. Rodnyi, "Progress in fast scintillators", Rad. Meas., vol. 33, pp. 605-614, 2001.
  10. V.N. Makhov, et al., "Spectroscopy of cubic elpasolite Cs2NaYF6 crystals singly doped with $Er^{3+}$ and $Tm^{3+}$ under selective VUV excitation", Optical Mat.erials, vol. 27, Issue 6, pp. 1131-1137, 2005.
  11. A. M. Srivastava, et al., "Scintillating materials, articles employing the same, and methods for their use," U.S. patent number: US 2008/0001086 A1, 2008.
  12. R. Chen, et al., "Analysis of thermally stimulated process", 37, Pergamon Press, Oxford, 1981.
  13. P. W. Bridgman, "The compressibility of thirty metals as a function of pressure and temperature", Proc. Amer. Acad. Arts Sci., vol. 58, pp. 165-242, 1923.
  14. L. M. Bollinger, et al., "Measurement of the time dependence of scintillation intensity by a delayedcoincidence method", Rev. Sci. Instr., vol. 32, pp. 1044-1050, 1961.
  16. H. Kunkely and A. Vogler, "Can halides serve as a charge transfer acceptor? Metal-centered and metal-to-ligand charge transfer excitation of cerium(III) halides," Inorganic Chem. Comm., vol. 9, pp. 1-3, 2006.
  17. R. Chen, "Glow curves with general order kinetics", J. Electrochem. Soc., vol. 116, pp. 1254-1257, 1969.