Analysis on Wind Profile Characteristics in a Sublayer of Atmospheric Boundary Layer over a Semi-Complex Terrain - LIDAR Remote Sensing Campaign at Pohang Accelerator Laboratory

준복잡지형 대기경계층 저층 풍속분포 특성분석 - 포항가속기 라이다 원격탐사 캠페인을 중심으로

  • Kim, Hyun-Goo (Wind Energy Center, Korea Institute of Energy Research)
  • 김현구 (한국에너지기술연구원 풍력발전센터)
  • Received : 2011.05.02
  • Accepted : 2012.01.19
  • Published : 2012.02.29


The mean wind speed and turbulence intensity profiles in the atmospheric boundary layer were extracted from a LIDAR remote sensing campaign in order to apply for CFD validation. After considering the semi-steady state field data requirements to be used for CFD validation, a neutral atmosphere campaign period, in which the main wind direction and the power-law exponent of the wind profile were constantly maintained, was chosen. The campaign site at the Pohang Accelerator Laboratory, surrounded by 40~50m high hills, with an apartment district spread beyond the hills, is to be classified as a semi-complex terrain. Nevertheless, wind speed profiles measured up to 100m above the ground fitted well into a theoretical-experimental logarithmic-law equation. The LIDAR remote-sensing data of the sub-layer of the atmospheric boundary layer has been proven to be superior to the data obtained by conventional extrapolation of the wind profile with 2 or 3 anemometer measurements.


Remote sensing;LIDAR;Complex terrain;Atmospheric boundary layer;Power-law;Logarithmic-law


Supported by : 지식경제부, 한국에너지기술연구원


  1. 김현구, 최지휘, 2010, 가상적 참값으로써 소다 측정자료를 적용한 라이다에 의한 풍속연직분포 측정의 불확도 분석, 한국태양에너지학회 논문집, 30(4), 79-85.
  2. 김현구, 황효정, 2010, 해외 풍력자원 컨설팅사의 바람지도 서비스 분석, 한국신재생에너지학회지, 6(2), 12-18.
  3. 김현구, 김동혁, 전완호, 최현정, 2011a, 풍력자원평가용 원드큐브 라이다와 씬텍 소다의 비교검증 - 잠실 원격탐사 캠페인, 한국신재생에너지학회지, 7(2), 43-50.
  4. 김현구, 정진화, 안해준, 지영미, 2011b, 풍력자원평가용 원드큐브 라이다와 렘텍 소다의 비교검증 - 포항가속기 원격탐사 캠페인, 한국태양에너지학회 논문집, 31(2), 63-71.
  5. 한국에너지기술평가원, 2011, 복잡지형에서의 풍력단지 최적설계 기술개발, 2011년도 에너지 R&D 상세기획보고서, 20.
  6. 정태윤, 임희창, 김현구, 장문석, 2009, 월령 연안지역 대기경계층의 유동특성과 대기 안정성에 대한 고찰, 한국환경과학회지, 18(8), 857-865.
  7. Bradley, S., 2008, Wind speed erros for LIDARs and SODARs in complex terrain, Earth and Environmental Science, I, 1-7.
  8. Caughey, S. J., Wyngaard, J. C., Kaimal, J. C., 1979, Turbulence in the evolving stable boundary layer, American Meteorological Soc., 36, 1041-1052.
  9. Kathleen, E. M., Bailey, B. H., 2004, Roughness lengths in complex terrain derived from SODAR wind profiles, 16th Symposium on Boundary Layers and Turbulence, Portland, USA.
  10. Kline, J. B., 1996, Review of data reconstruction methods, Report to NREL National Wind Technology Center.
  11. Leosphere, 2008, WindCube User's Manual, LEO/WIND/MAN/010607, 39.
  12. Plate, E., 1982, Engineering meteorology, Elsevier Sci. Pub. Co., 740.
  13. Townsend, A. A. R., 1976, The structure of turbulent shear flow, Cambridge University Press, Cambridge, UK.

Cited by

  1. Evaluation of Onshore Wind Resource Potential According to Environmental Conservation Value Assessment vol.22, pp.6, 2013,