Retrieval of Dust Backscatter Coefficient using Quartz Raman Channel in Lidar Measurements

석영 라만 채널을 이용한 황사 후방 산란 계수 산출

  • Received : 2011.11.16
  • Accepted : 2012.01.09
  • Published : 2012.02.29


We present a retrieval method to obtain dust backscatter coefficient from the mixed Asian dust and pollutant layer. In the present study, vertically resolved quartz (silicon dioxide, silica) concentration was calculated using Raman scattering signals from quartz at 546 nm. Dust concentration was obtained based on typical mass percentage of quartz in Asian dust. The highest value of dust concentration at 3.7 km in March 21, 2010 was 22.3 and 10.9 ${\mu}gm^{-3}$ according to the quartz percentage in Asian dust as 65 and 30% based on literature survey, respectively. OPAC (Optical Properties of Aerosol and Clouds) simulations were conducted to calculate dust backscatter coefficient. The retrieved dust concentration was used as an input parameter for the OPAC calculations. Utilization of quartz Raman channel in Lidar measurements is considered useful for distinguishing optical properties of dust and nondust aerosol in the mixing state of Asian dust.


Quartz;OPAC;Lidar;Asian dust


  1. Anderson, T.L., S.J. Masonis, D.S. Covert, N.C. Ahlquist, S.G. Howell, A.D. Clarke, and C.S. McNaughton (2003) Variability of aerosol optical properties derived from in situ aircraft measurements during ACEAsia, J. Geophys. Res., 108(D23), 8647, doi:10.1029/2002JD003247.
  2. Feng, Q., K.N. Endo, and G.D. Cheng (2002) Dust storms in China: A case study of dust storm variation and dust characteristics, Bull. Eng. Geol. Environ., 61, 253-261.
  3. Ganzei, L.A. and N.G. Razzhigaeva (2006) Composition of sand storm particles in the southern far east, Lithol. Miner. Resour., 41(3), 215-221.
  4. Hess, M., P. Koepke, and I. Schult (1998) Optical properties of aerosols and clouds: The software package OPAC, B. Am. Meteorol. Soc., 79(5), 831-844.<0831:OPOAAC>2.0.CO;2
  5. Huebert, B.J., T. Bates, P.B. Russell, G. Shi, Y.J. Kim, K. Kawamura, G. Carmichael, and T. Nakajima (2003) An overview of ACE-Asia: strategies for quantifying the relationships between Asian aerosols and their climatic impacts, J. Geophys. Res., 108(D23), 8633.
  6. Husar, R.B., D.M. Tratt, B.A. Schichtel, S.R. Falke, F. Li, D. Jaffe, S. Gassó, T. Gill, N.S. Laulainen, F. Lu, M.C. Reheis, Y. Chun, D. Westphal, B.N. Holben, C. Gueymard, I. McKendry, N. Kuring, G.C. Feldman, C. McClain, R.J. Frouin, J. Merrill, D. DuBois, F. Vignola, T. Murayama, S. Nickovic, W.E. Wilson, K. Sassen, N. Sugimoto, and W.C. Malm (2001) Asian dust events of April 1998, J. Geophys. Res., 106, 18317-18330.
  7. Ivanov, V.A., M.A. Prokofyev, D.A. Zhukovsky, V.F. Zhvalev, L.S. Ivlev, and J.W. Winchester (1989) Chemical and mineralogical investigation of tropospheric aerosols during the U.S.S.R.-U.S.A. experiment "DUNE", Dushanbe, Tadzhik SSR, Special environmental Report No. 17, WMO-No. 724, World Meteorological Organization, Geneva, pp. 100-103.
  8. Kim, K.W., Z. He, and Y.J. Kim (2004) Physicochemical characteristics and radiative properties of Asian dust particles observed at Kwangju, Korea, during the 2001 ACE-Asia intensive observation period, J. Geophys. Res., 109, D19S02, doi:10.1029/2003JD003693.
  9. Lee, D.H., K.H. Lee, J.E. Kim, and J. Kim (2006) Characteristics of atmospheric aerosol optical thickness over the northeast Asia using TERRA/MODIS data during the Year 2000-2005, Atmoshpere, 16(2), 85-96.
  10. Ma, C.J., M. Kasahara, R. Höller, and T. Kamiya (2001) Characteristics of single particles sampled in Japan during the Asian dust-storm period, Atmos. Environ., 35(15), 2707-2714.
  11. Murayama, T., D. Müller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto (2004) Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003, Geophys. Res. Lett., 31, 1-5.
  12. Muller, D., I. Mattis, B. Tatarov, Y.M. Noh, D.H. Shin, S.K. Shin, K.H. Lee, Y.J. Kim, and N. Sugimoto (2010) Mineral quartz concentration measurements of mixed mineral dust/urban haze pollution plumes over Korea with multiwavelength aerosol Ramanquartz lidar, Geophys. Res. Lett., 37(20), L20810.
  13. Noh, Y.M., Y.J. Kim, B.C. Choi, and T. Murayama (2007) Aerosol lidar ratio characteristics measured by a multi-wavelength Raman lidar system at Anmyeon Island, Korea, Atmos. Res., doi:10.1016/j.atmosres.2007.03.006.
  14. Noh, Y.M., Y.J. Kim, and D. Muller (2008) Seasonal characteristics of lidar ratio measured with a Raman lidar at Gwangju, Korea in spring and autumn, Atmos. Environ., 42, 2208-2224.
  15. Noh, Y.M., K.H. Lee, and H.L. Lee (2011) A retrieval of vertically- resolved Asian dust concentration from quartz channel measurements of Raman lidar, J. KOSAE, 27(3), 326-336. (in Korean with English abstract)
  16. Sakai, T., T. Nagai, M. Nakazato, Y. Mano, and T. Murayama (2003) Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and watervapor mixing ratio over Tsukuba, Appl. Opt., 42(36), 7103-7116.
  17. Schwartz, S.E. and M.O. Andreae (2002), Uncertainty in climate change caused by aerosols, Science, 272, 1121-1122.
  18. Shimizu, A., N. Sugimoto, I. Matsui, K. Arao, I. Uno, T. Murayama, N. Kagawa, K. Aoki, A. Uchiyama, and A. Yamazaki (2004) Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia, J. Geophys. Res., 109, D19S17, doi:10.1029/2002JD003253.
  19. Tatarov, B. and N. Sugimoto (2005) Estimation of quartz concentration in the tropospheric mineral aerosols using combined Raman and high-spectral-resolution lidars, Opt. Lett., 30, 3407-3409.
  20. Uno, I., H. Amano, S. Emori, K. Kinoshita, I. Matsui, and N. Sugimoto (2001) Trans-Pacific yellow sand transport observed in April 1998: A numerical simulation, J. Geophys. Res., 106, 18331-18344.


Supported by : 기상청