DOI QR코드

DOI QR Code

THERMAL PLASMA DECOMPOSITION OF FLUORINATED GREENHOUSE GASES

  • Choi, Soo-Seok (Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology) ;
  • Park, Dong-Wha (Department of Chemical Engineering and Regional Innovation Center for Environmental Technology of Thermal Plasma (RIC-ETTP), Inha University) ;
  • Watanabe, Takyuki (Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology)
  • Received : 2011.12.31
  • Published : 2012.02.25

Abstract

Fluorinated compounds mainly used in the semiconductor industry are potent greenhouse gases. Recently, thermal plasma gas scrubbers have been gradually replacing conventional burn-wet type gas scrubbers which are based on the combustion of fossil fuels because high conversion efficiency and control of byproduct generation are achievable in chemically reactive high temperature thermal plasma. Chemical equilibrium composition at high temperature and numerical analysis on a complex thermal flow in the thermal plasma decomposition system are used to predict the process of thermal decomposition of fluorinated gas. In order to increase economic feasibility of the thermal plasma decomposition process, increase of thermal efficiency of the plasma torch and enhancement of gas mixing between the thermal plasma jet and waste gas are discussed. In addition, noble thermal plasma systems to be applied in the thermal plasma gas treatment are introduced in the present paper.

Keywords

Plasma Torch;Greenhouse Gas;Thermal Decomposition;Destruction and Removal Efficiency (DRE);Chemical Reaction;Flow Field

References

  1. C. C. Allgood, "Fluorinated Gases for Semiconductor Manufacture: Process Advances in Chemical Vapor Deposition Chamber Cleaning", J. Fluorine Chem., vol. 122, pp. 105-112 (2003). https://doi.org/10.1016/S0022-1139(03)00101-5
  2. J. P. Chang and J. W. Coburn, "Plasma-Surface Interactions", J. Vac. Sci. Tech. A, vol. 21, pp. S145-S151 (2003). https://doi.org/10.1116/1.1600452
  3. J. V. Gompel, "PFCs in the Semiconductor Industry: A Primer", Semicon. Int., vol. 23, pp. 321-330 (2000).
  4. R. Ravishankara, S. Solomon, A. A. Turnipseed, and R. F. Warren, "Atmospheric Lifetimes of Long-Lived Halogenated Species", Science, vol. 259, pp. 194-199 (1993). https://doi.org/10.1126/science.259.5092.194
  5. I. Namose, "Optimization of Gas Utilization in Plasma Processes", IEEE Tran. Semicon. Manufacturing, vol. 16, pp. 429-435 (2003). https://doi.org/10.1109/TSM.2003.815635
  6. S. Samukawa and T. Mukai, "New Radical Control Method for High-Performance Dielectric Etching with Nonperfluorocompound Gas Chemistries in Ultrahigh- Frequency Plasma", J. Vac. Sci. Tech. A, vol. 17, pp. 2551- 2556 (1999). https://doi.org/10.1116/1.581996
  7. W. -T. Tsai, H. -P. Chen, and W. -Y. Hsien, "A Review of Uses, Environmental Hazards and Recovery/Recycle Technologies of Perfluorocarbons (PFCs) Emissions from the Semiconductor Manufacturing processes", J. Loss Prevention Proc. Ind., vol. 15, pp. 65-75 (2002). https://doi.org/10.1016/S0950-4230(01)00067-5
  8. T. Streif, G. DePinto, S. Dunnigan, and A. Atherton, "PFC Reduction through Process and Hardware Optimization", Semicon. Int., vol. 20, pp. 129-134 (1997).
  9. V. Mohindra, H. Chae, H. H. Sawin, and M. T. Mocella, "Abatement of Perfluorocompounds (PFCs) in a Microwave Tubular Reactor Using $O_{2}$ as an Additive Gas", IEEE Trans. Semicond. Manuf., vol. 10, pp. 399-411 (1997). https://doi.org/10.1109/66.618213
  10. B. A. Wofford, M. W. Jackson, C. Hartz, and J. W. Bevan, "Surface-Wave Plasma Abatement of $CHF_{3}$ and $CF_{4}$ Containing Semiconductor Process Emissions", Environ. Sci. Tech., vol. 33, pp. 1892-1897 (1999). https://doi.org/10.1021/es9805472
  11. X. P. Xu, S. Rauf, and M. J. Kushner, "Plasma Abatement of Perfluorocompounds in Inductively Coupled Plasma Reactors", J. Vac. Sci. Tech. A, vol. 18, pp. 213-231 (2000). https://doi.org/10.1116/1.582138
  12. T. Kuroki, J. Mine, S. Odahara, M. Okubo, T. Yamamoto, and N. Saeki, "$CF_{4}$ Decomposition of Flue Gas From Semiconductor Process Using Inductively Coupled Plasma", IEEE Trans. Ind. Appl., vol. 41, pp. 221-228 (2005). https://doi.org/10.1109/TIA.2004.840954
  13. E. J. Tonnis, V. Vartanian, L. Beu, T. Lii, R. Jewett, and David Graves, "Evaluation of a Litmas "Blue" Point-of-Use (POU) Plasma Abatement Device for Perfluorocompound (PFC) Destruction", Technology Transfer #98123605AENG, International SEMATECH (1998).
  14. J. P. Fournier and M. E. Elta, "Utilizing a Portable Cycle Purge Nitrogen Venturi for Removal of Process Gases in Semiconductor Processing gas Systems", J. Vac. Sci. Tech. A, vol. 10, pp. 3376-3377 (1992). https://doi.org/10.1116/1.577831
  15. J. V. Gompel and T. Walling, "A New Way to Treat Process Exhaust to Remove $CF_{4}$", Semicon. Int., vol. 20, pp. 95-100 (1997).
  16. D. R. Burgess, Jr., M. R. Zachariah, W. Tsang, and P. R. Westmoreland, "Thermochemical and Chemical Kinetic Data for Fluorinated Hydrocarbons", Prog. Energy Combust. Sci., vol. 21, pp. 453-529 (1996). https://doi.org/10.1016/0360-1285(95)00009-7
  17. G. M. Bickle, T. Suzuki, and Y. Mitarai, "Catalytic Destruction of Chlorofluorocarbons and Toxic Chlorinated Hydrocarbons", Appl. Catal. B: Environ., vol. 4, pp. 141- 153 (1994). https://doi.org/10.1016/0926-3373(94)00023-9
  18. S. Futamura and A. Gurusamy, "Synergy of Nonthermal Plasma and Catalysts in the Decomposition of Fluorinated Hydrocarbons", J. Electrostatics, vol. 63, pp. 949-954 (2005). https://doi.org/10.1016/j.elstat.2005.03.067
  19. S. J. Yu and M. B. Jang, "Oxidative Conversion of PFC via Plasma Processing with Dielectric Barrier Discharges", Plasma Chem. Plasma Process., vol. 21, pp. 311-327 (2001). https://doi.org/10.1023/A:1011066208188
  20. K. Urashima, K. G. Kostov, J. -S. Chang, Y. Okayasu, T. Iwaizumi, K. Yoshimura, and T. Kato, "Removal of $C_{2}F_{6}$ from a Semiconductor Process Flue Gas by a Ferroelectric Packed-Bed Barrier Discharge Reactor with an Adsorber", IEEE Tran. Ind. Appl., vol. 37, pp. 1456-1463 (2001). https://doi.org/10.1109/28.952521
  21. Y. Kim, K. T. Kim, M. S. Cha, Y. H. Song, and S. J. Kim, "$CF_{4}$ Decompositions Using Streamer- and Glow-Mode in Dielectric Barrier Discharges", IEEE Trans. Plasma Sci., vol. 33, pp. 1041-1046 (2005). https://doi.org/10.1109/TPS.2005.848616
  22. Y. C. Hong and H. S. Uhm, "Abatement of $CF_{4}$ by Atmospheric-Pressure Microwave Plasma Torch", Phys. Plasma, vol. 10, pp. 3410-3414 (2003). https://doi.org/10.1063/1.1587154
  23. M. B. Chang and J. -S. Chang, "Abatement of PFCs from Semiconductor Manufacturing Processes by Nonthermal Plasma Technologies: A Critical Review", Ind. Eng. Chem. Res., vol. 45, pp. 4101-4109 (2006). https://doi.org/10.1021/ie051227b
  24. J. W. Sun and D. W. Park, "$CF_{4}$ Decomposition by Thermal Plasma Processing", Korean J. Chem. Eng., vol. 30, pp. 476-481 (2003). https://doi.org/10.1007/BF02705551
  25. S. Choi, H. S. Lee, C. M. Lee, J. S. Nam, and S. H. Hong, "Comparative Study between Air and Nitrogen Thermal Plasma Process for $CF_{4}$ Decomposition", Proc. 18th Int. Symp. Plasma Chem. (ISPC18), Kyoto, Japan, Aug. 26-31, 2007.
  26. S. Choi, H. S. Lee, S. Kim, S. H. Hong, and D. -W. Park, "Thermal Plasma Analysis for the Pyrolysis of PFCs on a Large Scale", J. Korean Phys. Soc., vol. 55, pp. 1819-1824 (2009). https://doi.org/10.3938/jkps.55.1819
  27. D. -y. Kim and D. W. Park, "Decomposition of PFCs by Steam Plasma at Atmospheric Pressure", Surface Coat. Tech., vol. 202, pp. 5280-5283 (2008). https://doi.org/10.1016/j.surfcoat.2008.06.023
  28. Narengerile, H. Saito, and T. Watanabe, "Decomposition of Tetrafluoromethane by Water Plasma Generated under Atmospheric Pressure", Thin Solid Films, vol. 518, pp. 929-935 (2009). https://doi.org/10.1016/j.tsf.2009.07.164
  29. P. Fauchais and A. Vardelle, "Thermal Plasmas", IEEE Tran. Plasma Sci., vol. 25, pp. 1258-1280 (1997). https://doi.org/10.1109/27.650901
  30. Narengerile, H. Saito, and T. Watanabe, "Decomposition Mechanism of Fluorinated Compounds in Water Plasmas Generated under Atmospheric Pressure", Plasma Chem. Plasma Process., vol. 30, pp. 813-829 (2010). https://doi.org/10.1007/s11090-010-9259-y
  31. S. -H. Han, H. -W. Park, T. -H. Kim, and D. -W. Park, "Large Scale Treatment of Perfluorocompounds Using a Thermal Plasma Scrubber", Clean Tech., vol. 17, pp. 250-258 (2011).
  32. S. Choi, S. H. Hong, D. -W. Park, and T. Watanabe, "Thermal Plasma Technology for Non-Degradable Greenhouse Gases Treatment", Proc. The 24th Symp. Plasma Sci. Mater. (SPSM-24), Osaka, Japan, Jul. 19-20, 2011.
  33. S. Choi, K. Y. Cho, J. M. Woo, J. C. Lim, J. K. Lee, "Numerical Analysis on a Thermal Plasma Reactor for HFC-23 Treatment", Current Appl. Phys., vol. 11, pp. S94-S98 (2011). https://doi.org/10.1016/j.cap.2011.05.008
  34. T. -H. Kim, S. Choi, and D. -W. Park, "Numerical Simulation on the Influence of Water Spray in Thermal Plasma Treatment of $CF_{4}$ gas", Current Appl. Phys., vol. 12, pp. 509-514 (2012). https://doi.org/10.1016/j.cap.2011.08.010
  35. R. Benocci, G. Bonizzoni, and E. Sindoni, "Thermal Plasmas for Hazardous Waste Treatment", World Scientific (1995).
  36. E. Pfender, "Thermal Plasma Technology: Where Do We Stand and Where Are We Going?", Plasma Chem. Plasma Proc., vol. 19, pp. 1-31 (1999). https://doi.org/10.1023/A:1021899731587
  37. S. -W. Kim, H. -S. Park, and H. -J. Kim, "100 kW Steam Plasma Process for Treatment of PCBs (Polychlorinated Biphenyls) Waste", Vacuum, vol. 70, pp. 59-66 (2003). https://doi.org/10.1016/S0042-207X(02)00761-3
  38. T. Watanabe, "Water Plasma Generation under Atmospheric Pressure for Waste Treatment", ASEAN J. Chem. Eng., vol. 5, pp. 30-34 (2005).
  39. J. Heberlein, and A. B. Murphy, "Thermal plasma waste treatment", J. Phys. D: Appl. Phys., vol. 41, 053001 (2008). https://doi.org/10.1088/0022-3727/41/5/053001
  40. S. H. Hong, et al., "Optimal Design and Fabrication Technology of Thermal Plasma Torches for Industrial Application", Seoul National University (2005).
  41. W. B. White, S. M. Johnson, G. B. Dantzig, "Chemical Equilibrium in Complex Mixtures", J. Chem. Phys., vol. 28, pp. 751-755 (1958). https://doi.org/10.1063/1.1744264
  42. E. Johnson, "Global Warming from HFC", Environ. Impact Assess. Rev., vol. 18, pp. 485-492 (1998). https://doi.org/10.1016/S0195-9255(98)00020-1
  43. G. Angelinoa and C. Invernizzib, "Experimental Investigation on the Thermal Stability of Some New Zero ODP Refrigerants", Int. J. Refrig., vol. 26, pp. 51-58 (2003). https://doi.org/10.1016/S0140-7007(02)00023-3
  44. A. McCullocha and A. A. Lindley, "Global Emissions of HFC-23 Estimated to Year 2015", Atmos. Environ., vol. 41, pp. 1560-1566 (2007). https://doi.org/10.1016/j.atmosenv.2006.02.021
  45. M. Mohanraj, S. Jayaraj, and C. Muraleedharan, "Environment Friendly Alternatives to Halogenated Refrigerants-A review", Int. J. Greenhouse Gas Control, vol. 3, pp. 108- 119 (2009). https://doi.org/10.1016/j.ijggc.2008.07.003
  46. K. D. Kang and S. H. Hong, "Arc Plasma Jets of a Nontransferred Plasma Torch", IEEE Trans. Plasma Sci., vol. 24, pp. 89-90 (1996). https://doi.org/10.1109/27.491705
  47. M. Hur and S. H. Hong, "Comparative Analysis of Turbulent Effects on Thermal Plasma Characteristics inside the Plasma Torches with Rod- and Well-Type Cathodes", J. Phys. D: Appl. Phys., vol. 35, pp. 1946-1954 (2002). https://doi.org/10.1088/0022-3727/35/16/308
  48. J. M. Park, K. S. Kim, T. H. Hwang, and S. H. Hong, "Three-Dimensional Modeling of Arc Root Rotation by External Magnetic Field in Nontransferred Thermal Plasma Torches", IEEE Tran. Plasma Sci., vol. 32, pp. 479-487 (2004). https://doi.org/10.1109/TPS.2004.828125
  49. S. Choi, J. M. Park, W. T. Ju, and S. H. Hong, "Effects of Constrictor Geometry, Arc Current, and Gas Flow Rate on Thermal Plasma Characteristics in a Segmented Arc Heater", J. Therm. Sci. Tech., vol. 6, pp. 210-218 (2011). https://doi.org/10.1299/jtst.6.210
  50. K. S. Kim, J. M. Park, S. Choi, J. Kim, and S. H. Hong, "Comparative Study of Two- and Three-Dimensional Modeling on Arc Discharge Phenomena inside a Thermal Plasma Torch with Hollow Electrodes", Phys. Plasma, vol. 15, 023501 (2008). https://doi.org/10.1063/1.2825670
  51. S. Choi, T. H. Hwang, J. H. Seo, D. U. Kim, and S. H. Hong, "Effects of Anode Nozzle Geometry on Ambient Air Entrainment Into Thermal Plasma Jets Generated by Nontransferred Plasma Torch, IEEE Trans. Plasma Sci., vol. 32, pp. 473-478 (2004). https://doi.org/10.1109/TPS.2004.826365
  52. K. S. Kim, J. M. Park, S. Choi, J. Kim, and S. H. Hong, "Enthalpy Probe Measurements and Three-Dimensional Modelling on Air Plasma Jets Generated by a Non- Transferred Plasma Torch with Hollow Electrodes", J. Phys. D: Appl. Phys., vol. 41, 065201 (2008). https://doi.org/10.1088/0022-3727/41/6/065201
  53. B. E. Launder and D. B. Spalding, "The Numerical Computation of Turbulent Flows", Comp. Method. Appl. Mech. Eng., vol. 31, pp. 269-289(1974).
  54. A. Gleizes, J. J. Gonzalez, and P. Freton, "Thermal Plasma Modeling", J. Phys. D: Appl. Phys., vol. 38, pp. R153-R183 (2005). https://doi.org/10.1088/0022-3727/38/9/R01
  55. A. B. Murphy, and C. J. Arundell, "Transport Coefficients of Argon, Nitrogen, Oxygen, Argon-Nitrogen, and Argon- Oxygen Plasmas", Plasma Chem. Plasma Process., vol. 14 pp. 451-490 (1994). https://doi.org/10.1007/BF01570207
  56. A. B. Murphy, "Transport Coefficients of Air, Argon-Air, Nitrogen-Air, and Oxygen-Air Plasmas", Plasma Chem. Plasma Process., vol. 15, pp. 279-307 (1995). https://doi.org/10.1007/BF01459700
  57. I. Sokolova, "High Temperature Gas and Plasma Transport Properties of $F_{4}$ and $CF_{4}$ Mixtures", Fluid Phase Equilib., vol. 174, pp. 213-220 (2000). https://doi.org/10.1016/S0378-3812(00)00428-3
  58. W. Han, E. M. Kennedy, S. K. Kundu, J. C. Mackie, A. A. Adesina, and B. Z. Dlugogorski, "Experimental and Chemical Kinetic Study of the Pyrolysis of Trifluoroethane and the Reaction of Trifluoromethane with Methane", J. Fluor. Chem., vol. 131, pp. 751-760 (2010). https://doi.org/10.1016/j.jfluchem.2010.03.012
  59. J. -F. Brilhac, B. Pateyron, J. -F. Coudert, P. Fauchais, and A. Bouvier, "Study of the Dynamic and Static Behavior of dc Vortex Plasma Torch: Part II: Well-Type Cathode", Plasma Chem. Plasma Proc., vol. 15, pp. 257-277 (1995). https://doi.org/10.1007/BF01459699
  60. E. Pfender, "Plasma Jet Behavior and Modeling Associated with the Plasma Spray Process", Thin Solid Films, vol. 238, pp. 228-241 (1994). https://doi.org/10.1016/0040-6090(94)90060-4
  61. J. F. Coudert, M. P. Planche, and P. Fauchais, "Characterization of D. C. Plasma Torch Voltage Fluctuations", Plasma Chem. Plasma Proc., vol. 16, pp. 211S-227S (1996). https://doi.org/10.1007/BF01512636
  62. J. R. Fincke, D. M. Crawford, S. C. Snyder, W. D. Swank, D. C. Haggard, and R. L. Williamson, "Entrainment in High-Velocity, High-Temperature Plasma Jets. Part 1: Experimental Results", Int. J. Heat Mass Transfer, vol. 46, pp. 4201-4213 (2003). https://doi.org/10.1016/S0017-9310(03)00272-2
  63. M. -H. Yuan, Narengerile, T. Watanabe, and C. -Y. Chang, "DC Water Plasma at Atmospheric Pressure for the Treatment of Aqueous Phenol", Environ. Sci. Tech., vol. 44, pp. 4710- 4715 (2010). https://doi.org/10.1021/es9038598
  64. Narengerile, H. Nishioka, and T. Watanabe, "Mechanisms of Decomposition of Organic Compoundsby Water Plasmas at Atmospheric Pressure", Jpn. J. Appl. Phys., vol. 50, 08JF13 (2011). https://doi.org/10.1143/JJAP.50.08JF13
  65. Narengerile, and T. Watanabe, "Acetone Decompositionby Water PlasmasatAtmospheric Pressure", Chem. Eng. Sci., vol. 69, pp. 296-303 (2012). https://doi.org/10.1016/j.ces.2011.10.045
  66. T. Li, S. Choi, T. Watanabe, T. Nakayama, and T. Tanaka, "Discharge and Optical Characteristics of Long DC Arc Plasma", Proc. The 24th Symp. Plasma Sci. Mater. (SPSM- 24), Osaka, Japan, Jul. 19-20, 2011.
  67. S. Choi, T. Li, T. Watanabe, T. Nakayama, and K. Otsuki, "Thermal Plasma Characterization on Long DC Arc Discharge for Waste Treatment", Proc. Plasma Conf. 2011 (Plasma 2011), Kanazawa, Japan, Nov. 22-25, 2011.

Cited by

  1. Characteristics of NH3 Decomposition according to Discharge Mode in Elongated Rotating Arc Reactor vol.35, pp.5, 2013, https://doi.org/10.4491/KSEE.2013.35.5.356
  2. Effects of NH3 flow rate on the thermal plasma synthesis of AlN nanoparticles vol.63, pp.10, 2013, https://doi.org/10.3938/jkps.63.1864
  3. Fuel Gas Production from Biomass Sources by Radio Frequency In-Liquid Plasma Method vol.03, pp.08, 2015, https://doi.org/10.4236/jpee.2015.38004
  4. Plasma-Chemical Treatment of Process Gases with Low-Concentration Fluorine-Containing Components vol.37, pp.1, 2017, https://doi.org/10.1007/s11090-016-9755-9