Rewiring carbon catabolite repression for microbial cell factory

  • Vinuselvi, Parisutham (School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Kim, Min-Kyung (School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Lee, Sung-Kuk (School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Ghim, Cheol-Min (School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2012.02.09
  • Published : 2012.02.29


Carbon catabolite repression (CCR) is a key regulatory system found in most microorganisms that ensures preferential utilization of energy-efficient carbon sources. CCR helps microorganisms obtain a proper balance between their metabolic capacity and the maximum sugar uptake capability. It also constrains the deregulated utilization of a preferred cognate substrate, enabling microorganisms to survive and dominate in natural environments. On the other side of the same coin lies the tenacious bottleneck in microbial production of bioproducts that employs a combination of carbon sources in varied proportion, such as lignocellulose-derived sugar mixtures. Preferential sugar uptake combined with the transcriptional and/or enzymatic exclusion of less preferred sugars turns out one of the major barriers in increasing the yield and productivity of fermentation process. Accumulation of the unused substrate also complicates the downstream processes used to extract the desired product. To overcome this difficulty and to develop tailor-made strains for specific metabolic engineering goals, quantitative and systemic understanding of the molecular interaction map behind CCR is a prerequisite. Here we comparatively review the universal and strain-specific features of CCR circuitry and discuss the recent efforts in developing synthetic cell factories devoid of CCR particularly for lignocellulose-based biorefinery.



  1. Ro, D.-K., Paradise, E. M., Ouellet, M., Fisher, K. J., Newman, K. L., Ndungu, J. M., Ho, K. A., Eachus, R. A., Ham, T. S., Kirby, J., Chang, M. C. Y., Withers, S. T., Shiba, Y., Sarpong, R. and Keasling, J. D. (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940-943.
  2. Ajikumar, P. K., Xiao, W.-H., Tyo, K. E. J., Wang, Y., Simeon, F., Leonard, E., Mucha, O., Phon, T. H., Pfeifer, B. and Stephanopoulos, G. (2010) Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330, 70-74.
  3. Steen, E. J., Kang, Y., Bokinsky, G., Hu, Z., Schirmer, A., McClure, A., del Cardayre, S. B. and Keasling, J. D. (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463, 559-562.
  4. Portnoy, V. A., Bezdan, D. and Zengler, K. (2011) Adaptive laboratory evolution: harnessing the power of biology for metabolic engineering. Curr. Op. Biotech. 22, 590-594.
  5. Portnoy, T., Margeot, A., Linke, R., Atanasova, L., Fekete, E., Sandor, E., Hartl, L., Karaffa, L., Druzhinina, I. S., Seiboth, B., Le Crom, S. and Kubicek, C. P. (2011) The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation. BMC Genomics 12, 269.
  6. Kimata, K., Takahashi, H., Inada, T., Postma, P. and Aiba, H. (1997) cAMP receptor protein-cAMP plays a crucial role in glucose-lactose diauxie by activating the major glucose transporter gene in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 94, 12914-12919.
  7. Gorke, B. and Vogel, J. (2008) Noncoding RNA control of the making and breaking of sugars. Gene. Dev. 22, 2914-2925.
  8. Parker, C., Peekhaus, N., Zhang, X. and Conway, T. (1997) Kinetics of sugar transport and phosphorylation influence glucose and fructose cometabolism by Zymomonas mobilis. App. Env. Microbiol. 63, 3519-3525.
  9. Kim, J., Yeom, J., Jeon, C. O. and Park, W. (2009) Intracellular 2-keto-3-deoxy-6-phosphogluconate is the signal for carbon catabolite repression of phenylacetic acid metabolism in Pseudomonas putida KT2440. Microbiol. 155, 2420-2428.
  10. Kim, J.-H., Block, D. and Mills, D. (2010) Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. App. Microbiol. Biotech. 88, 1077-1085.
  11. Wisselink, H. W., Toirkens, M. J., Wu, Q., Pronk, J. T. and van Maris, A. J. A. (2009) Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. App. Env. Microbiol. 75, 907-914.
  12. Gorke, B. and Stulke, J. (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev. Microbiol. 6, 613-624.
  13. Bruckner, R. and Titgemeyer, F. (2002) Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol. Lett. 209, 141-148.
  14. Beg, Q. K., Vazquez, A., Ernst, J., de Menezes, M. A., Bar-Joseph, Z., Barabasi, A.-L. and Oltvai, Z. N. (2007) Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity. Proc. Natl. Acad. Sci. U.S.A. 104, 12663-12668.
  15. Adhya, S. and Echols, H. (1966) Glucose effect and the galactose enzymes of Escherichia coli: correlation between glucose inhibition of induction and inducer transport. J. Bacteriol. 92, 601-608.
  16. Monod, J. (1942) Recherches sur la croissance des cultures bacteriennes. Hermann & Cie, Paris, France.
  17. Zhang, Y.-H. P. and Lynd, L. R. (2005) Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. Proc. Natl. Acad. Sci. U.S.A. 102, 7321-7325.
  18. van den Bogaard, P. T., Kleerebezem, M., Kuipers, O. P. and de Vos, W. M. (2000) Control of lactose transport, beta-galactosidase activity, and glycolysis by CcpA in Streptococcus thermophilus: evidence for carbon catabolite repression by a non-phosphoenolpyruvate-dependent phosphotransferase system sugar. J. Bacteriol. 182, 5982-5989.
  19. Parche, S., Beleut, M., Rezzonico, E., Jacobs, D., Arigoni, F., Titgemeyer, F. and Jankovic, I. (2006) Lactose-over-glucose preference in Bifidobacterium longum NCC2705: glcP, encoding a glucose transporter, is subject to lactose repression. J. Bacteriol. 188, 1260-1265.
  20. Collier, D. N., Hager, P. W. and Phibbs, P. V., Jr. (1996) Catabolite repression control in the Pseudomonads. Res. Microbiol. 147, 551-561.
  21. Frunzke, J., Engels, V., Hasenbein, S., Gatgens, C. and Bott, M. (2008) Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2. Mol. Microbiol. 67, 305-322.
  22. Wendisch, V. F., de Graaf, A. A., Sahm, H. and Eikmanns, B. J. (2000) Quantitative determination of metabolic fluxes during coutilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J. Bacteriol. 182, 3088-3096.
  23. Halbedel, S., Eilers, H., Jonas, B., Busse, J., Hecker, M., Engelmann, S. and Stulke, J. (2007) Transcription in Mycoplasma pneumoniae: analysis of the promoters of the ackA and ldh genes. J. Mol. Biol. 371, 596-607.
  24. Nicholson, T. L., Chiu, K. and Stephens, R. S. (2004) Chlamydia trachomatis lacks an adaptive response to changes in carbon source availability. Infect. Immun. 72, 4286-4289.
  25. Deutscher, J. (2008) The mechanisms of carbon catabolite repression in bacteria. Curr. Op. Microbiol. 11, 87-93.
  26. Liu, M., Durfee, T., Cabrera, J. E., Zhao, K., Jin, D. J. and Blattner, F. R. (2005) Global transcriptional programs reveal a carbon source foraging strategy by Escherichia coli. J. Biol. Chem. 280, 15921-15927.
  27. Marks, F., Klingmuller, U. and Muller-Decker, K. (2009) Cellular signal processing: an introduction to the molecular mechanisms of signal transduction. Garland Science, New York, USA.
  28. Postma, P. W., Lengeler, J. W. and Jacobson, G. R. (1993) Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol. Mol. Biol. Rev. 57, 543-594.
  29. Hogema, B. M., Arents, J. C., Bader, R., Eijkemans, K., Yoshida, H., Takahashi, H., Aiba, H. and Postma, P. W. (1998) Inducer exclusion in Escherichia coli by non-PTS substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of enzyme IIAGlc. Mol. Microbiol. 30, 487-498.
  30. Winkler, H. H. and Wilson, T. H. (1967) Inhibition of beta-galactoside transport by substrates of the glucose transport system in Escherichia coli. Biochim. Biophy. Acta 135, 1030-1051.
  31. Nam, T. W., Cho, S. H., Shin, D., Kim, J. H., Jeong, J. Y., Lee, J. H., Roe, J. H., Peterkofsky, A., Kang, S. O., Ryu, S. and Seok, Y. J. (2001) The Escherichia coli glucose transporter enzyme IICB(Glc) recruits the global repressor Mlc. EMBO J. 20, 491-498.
  32. Deutscher, J., Francke, C. and Postma, P. W. (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev. 70, 939-1031.
  33. Gunnewijk, M. G. W., Van Den Bogaard, P. T. C., Veenhoff, L. M., Heuberger, E. H., De Vos, W. M., Kleerebezem, M., Kuipers, O. P. and Poolman, B. (2001) Hierarchical control versus autoregulation of carbohydrate utilization in bacteria. J. Mol. Microbiol. Biotech. 3, 401-413.
  34. Singh, K. D., Schmalisch, M. H., Stulke, J. and Gorke, B. (2008) Carbon catabolite repression in Bacillus subtilis: quantitative analysis of repression exerted by different carbon sources. J. Bacteriol. 190, 7275-7284.
  35. Fujita, Y. (2009) Carbon catabolite control of the metabolic network in Bacillus subtilis. Biosci. Biotech. Biochem. 73, 245-259.
  36. Lindner, C., Galinier, A., Hecker, M. and Deutscher, J. (1999) Regulation of the activity of the Bacillus subtilis antiterminator LicT by multiple PEP-dependent, enzyme Iand HPr-catalyzed phosphorylation. Mol. Microbiol. 31, 995-1006.
  37. Lindner, C., Hecker, M., Le Coq, D. and Deutscher, J. (2002) Bacillus subtilis mutant LicT antiterminators exhibiting enzyme I-and HPr-independent antitermination affect catabolite repression of the bglPH operon. J. Bacteriol. 184, 4819-4828.
  38. Beisel, C. L. and Storz, G. (2011) The base-pairing RNA spot 42 participates in a multioutput feedforward loop to help enact catabolite repression in Escherichia coli. Mol. Cell 41, 286-297.
  39. Sonnleitner, E., Abdou, L. and Haas, D. (2009) Small RNA as global regulator of carbon catabolite repression in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A. 106, 21866-21871
  40. Gelade, R., Van de Velde, S., Van Dijck, P. and Thevelein, J. M. (2003) Multi-level response of the yeast genome to glucose. Genome Biol. 4, 233.
  41. Johnston, M. (1999) Feasting, fasting and fermenting. Glucose sensing in yeast and other cells. Trends Genet. 15, 29-33.
  42. Gancedo, J. M. (1998) Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62, 334-361.
  43. Santangelo, G. M. (2006) Glucose signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70, 253-282.
  44. Eisenreich, W., Dandekar, T., Heesemann, J. and Goebel, W. (2010) Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat. Rev. Microbiol. 8, 401-412.
  45. Scortti, M., Monzo, H. J., Lacharme-Lora, L., Lewis, D. A. and Vazquez-Boland, J. A. (2007) The PrfA virulence regulon. Microbes Infect. 9, 1196-1207.
  46. Freitag, N. E., Port, G. C. and Miner, M. D. (2009) Listeria monocytogenes-from saprophyte to intracellular pathogen. Nat. Rev. Microbiol. 7, 623-628.
  47. Lux, R., Munasinghe, V. R., Castellano, F., Lengeler, J. W., Corrie, J. E. and Khan, S. (1999) Elucidation of a PTS-carbohydrate chemotactic signal pathway in Escherichia coli using a time-resolved behavioral assay. Mol. Biol. Cell 10, 1133-1146.
  48. O'Toole, G. A., Gibbs, K. A., Hager, P. W., Phibbs, P. V., Jr. and Kolter, R. (2000) The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J. Bacteriol. 182, 425-431.
  49. Lawford, H. and Rousseau, J. (1994) Relative rates of sugar utilization by an ethanologenic recombinant Escherichia coli using mixtures of glucose, mannose, and xylose. App. Biochem. Biotech. 45-46, 367-381.
  50. Vinuselvi, P., Park, J. M., Lee, J. M., Oh, K., Ghim, C.-M. and Lee, S. K. (2011) Engineering microorganisms for biofuel production. Biofuels 2, 153-166.
  51. Ghim, C. M., Kim, T., Mitchell, R. J. and Lee, S. K. (2010) Synthetic biology for biofuels: building designer microbes from the scratch. Biotech. Bioproc. Eng. 15, 11-21.
  52. Cirino, P. C., Chin, J. W. and Ingram, L. O. (2006) Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotech. Bioeng. 95, 1167-1176.
  53. Nichols, N., Dien, B. and Bothast, R. (2001) Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol. App. Microbiol. Biotech. 56, 120-125.
  54. Zhang, X.-Z. and Zhang, Y.-H. P. (2010) One-step production of biocommodities from lignocellulosic biomass by recombinant cellulolytic Bacillus subtilis: opportunities and challenges. Eng. Life Sci. 10, 398-406.
  55. Xiao, H., Gu, Y., Ning, Y., Yang, Y., Mitchell, W. J., Jiang, W. and Yang, S. (2011) Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose. App. Env. Microbiol. 77, 7886-7895.
  56. Ha, S.-J., Galazka, J. M., Rin Kim, S., Choi, J.-H., Yang, X., Seo, J.-H., Louise Glass, N., Cate, J. H. D. and Jin, Y.-S. (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc. Natl. Acad. Sci. U.S.A. 108, 504-509.
  57. Agrawal, M., Mao, Z. and Chen, R. R. (2011) Adaptation yields a highly efficient xylose-fermenting Zymomonas mobilis strain. Biotech. Bioeng. 108, 777-785.
  58. Nakamura, N., Yamada, R., Katahira, S., Tanaka, T., Fukuda, H. and Kondo, A. (2008) Effective xylose/cellobiose co-fermentation and ethanol production by xylose-assimilating S. cerevisiae via expression of ${\beta}$-glucosidase on its cell surface. Enz. Microb. Tech. 43, 233-236.
  59. Vinuselvi, P. and Lee, S. (2011) Engineering Escherichia coli for efficient cellobiose utilization. App. Microbiol. Biotech. 92, 125-132.
  60. Su, P., Delaney, S. F. and Rogers, P. L. (1989) Cloning and expression of a ${\beta}$-glucosidase gene from Xanthomonas albilineans in Escherichia coli and Zymomonas mobilis. J. Biotech. 9, 139-152.
  61. Bokinsky, G., Peralta-Yahya, P. P., George, A., Holmes, B. M., Steen, E. J., Dietrich, J., Soon Lee, T., Tullman-Ercek, D., Voigt, C. A., Simmons, B. A. and Keasling, J. D. (2011) Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 108, 19949-19954.
  62. Inada, T., Kimata, K. and Aiba, H. J. (1996) Mechanism responsible for glucose-lactose diauxie in Escherichia coli: challenge to the cAMP model. Genes Cells 1, 293-301.
  63. Hernandez-Montalvo, V., Valle, F., Bolivar, F. and Gosset, G. (2001) Characterization of sugar mixtures utilization by an Escherichia coli mutant devoid of the phosphotransferase system. App. Microbiol. Biotech. 57, 186-191.
  64. Dien, B. S., Nichols, N. N. and Bothast, R. J. (2002) Fermentation of sugar mixtures using Escherichia coli catabolite repression mutants engineered for production of lactic acid. J. Industr. Microbiol. Biotech. 29, 221-227.
  65. Lee, S. K. and Keasling, J. D. (2006) Effect of glucose or glycerol as the sole carbon source on gene expression from the Salmonella prpBCDE promoter in Escherichia coli. Biotech. Prog. 22, 1547-1551.
  66. Li, R., Chen, Q., Wang, P. and Qi, Q. (2007) A novel-designed Escherichia coli for the production of various polyhydroxyalkanoates from inexpensive substrate mixture. App. Microbiol. Biotech. 75, 1103-1109.
  67. Nair, N. U. and Zhao, H. (2010) Selective reduction of xylose to xylitol from a mixture of hemicellulosic sugars. Metabol. Eng. 12, 462-468.
  68. Eiteman, M. A., Lee, S. A., Altman, R. and Altman, E. (2009) A substrate-selective co-fermentation strategy with Escherichia coli produces lactate by simultaneously consuming xylose and glucose. Biotech. Bioeng. 102, 822-827.
  69. Yomano, L., York, S., Shanmugam, K. and Ingram, L. (2009) Deletion of methylglyoxal synthase gene (mgsA) increased sugar co-metabolism in ethanol-producing Escherichia coli. Biotech. Lett. 31, 1389-1398.
  70. Vinuselvi, P. and Lee, S. K. (2012) Engineered Escherichia coli capable of co-utilization of cellobiose and xylose. Enz. Microb. Tech. 50, 1-4.
  71. Karhumaa, K., Wiedemann, B., Hahn-Hagerdal, B., Boles, E. and Gorwa-Grauslund, M. F. (2006) Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microb. Cell Fact. 5, 18.
  72. Bertilsson, M., Andersson, J. and Liden, G. (2008) Modeling simultaneous glucose and xylose uptake in Saccharomyces cerevisiae from kinetics and gene expression of sugar transporters. Bioproc. Biosyst. Eng. 31, 369-377.
  73. Hector, R., Qureshi, N., Hughes, S. and Cotta, M. (2008) Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. App. Microbiol. Biotech. 80, 675-684.
  74. Young, E., Poucher, A., Comer, A., Bailey, A. and Alper, H. (2011) Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host. App. Env. Microbiol. 77, 3311-3319.
  75. Ha, S.-J., Wei, Q., Kim, S. R., Galazka, J. M., Cate, J. and Jin, Y.-S. (2011) Cofermentation of cellobiose and galactose by an engineered Saccharomyces cerevisiae strain. App. Env. Microbiol. 77, 5822-5825.
  76. Joachimsthal, E. and Rogers, P. (2000) Characterization of a high-productivity recombinant strain of Zymomonas mobilis for ethanol production from glucose/xylose mixtures. App. Biochem. Biotech. 84-86, 343-356.
  77. Joachimsthal, E., Haggett, K. and Rogers, P. (1999) Evaluation of recombinant strains of Zymomonas mobilis for ethanol production from glucose/xylose media. App. Biochem. Biotech. 77, 147-157.
  78. Leksawasdi, N., Joachimsthal, E. and Rogers, P. (2001) Mathematical modelling of ethanol production from glucose/ xylose mixtures by recombinant Zymomonas mobilis. Biotech. Lett. 23, 1087-1093.
  79. De Graaf, A. A., Striegel, K., Wittig, R. M., Laufer, B., Schmitz, G., Wiechert, W., Sprenger, G. A. and Sahm, H. (1999) Metabolic state of Zymomonas mobilis in glucose-, fructose-, and xylose-fed continuous cultures as analysed by $^{13}C$-and $^{31}P$-NMR spectroscopy. Arch. Microbiol. 171, 371-385.
  80. Dahl, M. K., Schmiedel, D. and Hillen, W. (1995) Glucose and glucose-6-phosphate interaction with Xyl repressor proteins from Bacillus spp. may contribute to regulation of xylose utilization. J. Bacteriol. 177, 5467-5472.
  81. Rodionov, D. A., Mironov, A. A. and Gelfand, M. S. (2001) Transcriptional regulation of pentose utilisation systems in the Bacillus/Clostridium group of bacteria. FEMS Microbiol. Lett. 205, 305-314.
  82. De Wulf, P., Soetaert, W., Schwengers, D. and Vandamme, E. J. (1996) D-Glucose does not catabolite repress a transketolase-deficient D-ribose-producing Bacillus subtilis mutant strain. J. Industr. Microbiol. Biotech. 17, 104-109.
  83. Joshua, C. J., Dahl, R., Benke, P. I. and Keasling, J. D. (2011) Absence of diauxie during simultaneous utilization of glucose and xylose by Sulfolobus acidocaldarius. J. Bacteriol. 193, 1293-1301.
  84. Kim, J.-H., Shoemaker, S. P. and Mills, D. A. (2009) Relaxed control of sugar utilization in Lactobacillus brevis. Microbiol. 155, 1351-1359.
  85. Kim, J.-H., Block, D. E., Shoemaker, S. P. and Mills, D. A. (2010) Atypical ethanol production by carbon catabolite derepressed lactobacilli. Biores. Tech. 101, 8790-8797.
  86. Zhu, Y. S., Wu, Y. Q., Chen, W., Tan, C., Gao, J. H., Fei, J. X. and Shih, C. N. (1982) Induction and regulation of cellulase synthesis in Trichoderma pseudokoningii mutants EA3-867 and N2-78. Enz. Microb. Tech. 4, 3-12.
  87. Foreman, P. K., Brown, D., Dankmeyer, L., Dean, R., Diener, S., Dunn-Coleman, N. S., Goedegebuur, F., Houfek, T. D., England, G. J., Kelley, A. S., Meerman, H. J., Mitchell, T., Mitchinson, C., Olivares, H. A., Teunissen, P. J. M., Yao, J. and Ward, M. (2003) Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J. Biol. Chem. 278, 31988-31997.
  88. Andrianantoandro, E., Basu, S., Karig, D.K. and Weiss, R. (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol. Syst. Biol. 2, 2006:0028.
  89. Trinh, C. T., Unrean, P. and Srienc, F. (2008) Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses. App. Env. Microbiol. 74, 3634-3643.
  90. Desai, T. A. and Rao, C. V. (2010) Regulation of arabinose and xylose metabolism in Escherichia coli. App. Env. Microbiol. 76, 1524-1532.
  91. Chu, C., Han, C., Shimizu, H. and Wong, B. (2002) The effect of fructose, galactose, and glucose on the induction of ${\beta}$-galactosidase in Escherichia coli. J. Exp. Microbiol. Immunol. 2, 5.
  92. Deanda, K., Zhang, M., Eddy, C. and Picataggio, S. (1996) Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. App. Env. Microbiol. 62, 4465-4470.
  93. Kim, S.-K., Kimura, S., Shinagawa, H., Nakata, A., Lee, K.-S., Wanner, B. L. and Makino, K. (2000) Dual Transcriptional regulation of the Escherichia coli phosphate-starvation-inducible psiE gene of the phosphate regulon by PhoB and the cyclic AMP (cAMP)-cAMP receptor protein complex. J. Bacteriol. 182, 5596-5599.
  94. Kleijn, R. J., Buescher, J. M., Le Chat, L., Jules, M., Aymerich, S. and Sauer, U. (2009) Metabolic fluxes during strong carbon catabolite repression by malate in Bacillus subtilis. J. Biol. Chem. 285, 1587-1596.
  95. Grimmler, C., Held, C., Liebl, W. and Ehrenreich, A. (2010) Transcriptional analysis of catabolite repression in Clostridium acetobutylicum growing on mixtures of D-glucose and D-xylose. J. Biotech. 150, 315-323.
  96. Behari, J. and Youngman, P. (1998) Regulation of hly expression in Listeria monocytogenes by carbon sources and pH occurs through separate mechanisms mediated by PrfA. Infect. Immun. 66, 3635-3642.
  97. Behari, J. and Youngman, P. (1998) A homolog of CcpA mediates catabolite control in Listeria monocytogenes but not carbon source regulation of virulence genes. J. Bacteriol. 180, 6316-6324.
  98. Gilbreth, S. E., Benson, A. K. and Hutkins, R. W. (2004) Catabolite repression and virulence gene expression in Listeria monocytogenes. Curr. Microbiol. 49, 95-98.
  99. Degnan, B. A. and Macfarlane, G. T. (1991) Comparison of carbohydrate substrate preferences in eight species of Bifidobacteria. FEMS Microbiol. Lett. 68, 151-156.
  100. Pokusaeva, K., Fitzgerald, G. and van Sinderen, D. (2011) Carbohydrate metabolism in Bifidobacteria. Genes Nutr. 6, 285-306.
  101. Rojo, F. (2010) Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment. FEMS Microbiol. Rev. 34, 658-684.
  102. Ng, T. K. and Zeikus, J. G. (1982) Differential metabolism of cellobiose and glucose by Clostridium thermocellum and Clostridium thermohydrosulfuricum. J. Bacteriol. 150, 1391-1399.

Cited by

  1. Eliminating a global regulator of carbon catabolite repression enhances the conversion of aromatic lignin monomers to muconate in Pseudomonas putida KT2440 vol.5, 2017,
  2. Optimization of key factors affecting hydrogen production from sugarcane bagasse by a thermophilic anaerobic pure culture vol.7, pp.1, 2014,
  3. Physiology of Geobacter metallireducens under excess and limitation of electron donors. Part I. Batch cultivation with excess of carbon sources vol.37, pp.4, 2014,
  4. Metabolic Engineering and Comparative Performance Studies of Synechocystis sp. PCC 6803 Strains for Effective Utilization of Xylose vol.6, 2015,
  5. Current status and future perspectives of kinetic modeling for the cell metabolism with incorporation of the metabolic regulation mechanism vol.2, pp.1, 2015,
  6. UV Mutagenesis of Aspergillus flavus for Enhanced Mannanase Synthesis and Catabolite Activation Studies vol.10, pp.11, 2015,
  7. Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2 R ,3 R )-2,3-butanediol from lignocellulose-derived sugars vol.28, 2015,
  8. The impact of succinate trace on pWW0 and ortho -cleavage pathway transcription in Pseudomonas putida mt-2 during toluene biodegradation vol.234, 2017,
  9. Identification of key regulators in glycogen utilization in E. coli based on the simulations from a hybrid functional Petri net model vol.7, pp.Suppl 6, 2013,
  10. Engineered Escherichia coli for simultaneous utilization of galactose and glucose vol.135, 2013,
  11. Strategies for eliminating l-arabinitol in the bioconversion of xylitol vol.51, pp.12, 2016,
  12. Biological valorization of low molecular weight lignin vol.34, pp.8, 2016,
  13. Black and white with some shades of grey: the diverse responses of inducible metabolic pathways inEscherichia coli vol.93, pp.6, 2014,
  14. Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain vol.170, 2014,
  15. The Crc/CrcZ-CrcY global regulatory system helps the integration of gluconeogenic and glycolytic metabolism inPseudomonas putida vol.17, pp.9, 2015,
  16. Metabolic engineering strategies for improving xylitol production from hemicellulosic sugars vol.35, pp.11, 2013,
  17. Biofuel production from macroalgae toward bio-based economy vol.6, pp.1, 2014,
  18. Production of 2,3-butanediol byKlebsiella oxytocafrom various sugars in microalgal hydrolysate vol.31, pp.6, 2015,
  19. The translational repressor Crc controls thePseudomonas putidabenzoate and alkane catabolic pathways using a multi-tier regulation strategy vol.15, pp.1, 2013,
  20. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol vol.23, 2014,
  21. Regulation of glycogen metabolism by the CRE-1, RCO-1 and RCM-1 proteins in Neurospora crassa. The role of CRE-1 as the central transcriptional regulator vol.77, 2015,
  22. Metabolic Engineering Strategies for Co-Utilization of Carbon Sources in Microbes vol.3, pp.1, 2016,
  23. Simultaneous Fermentation of Glucose and Xylose to Butanol by Clostridium sp. Strain BOH3 vol.80, pp.15, 2014,
  24. Carbon Catabolite Repression in Filamentous Fungi vol.19, pp.1, 2017,
  25. Fluorinated waste and firefighting activities: biodegradation of hydrocarbons from petrochemical refinery soil co-contaminated with halogenated foams pp.1614-7499, 2018,
  26. An ensemble of mathematical models showing diauxic growth behaviour vol.12, pp.1, 2018,
  27. Exploitation of novel wild type solventogenic strains for butanol production vol.11, pp.1, 2018,
  28. l-Arabinose triggers its own uptake via induction of the arabinose-specific Gal2p transporter in an industrial Saccharomyces cerevisiae strain vol.11, pp.1, 2018,
  29. Heavy water-labeled Raman spectroscopy reveals carboxymethylcellulose-degrading bacteria and degradation activity at the single-cell level vol.103, pp.3, 2019,