Bulletin of the Korean Chemical Society
- Volume 33 Issue 2
- /
- Pages.613-619
- /
- 2012
- /
- 0253-2964(pISSN)
- /
- 1229-5949(eISSN)
DOI QR Code
Prediction of Acute Toxicity to Fathead Minnow by Local Model Based QSAR and Global QSAR Approaches
- In, Young-Yong (Bioinformatics and Molecular Design Research Center) ;
- Lee, Sung-Kwang (Department of Chemistry, Hannam University) ;
- Kim, Pil-Je (National Institute of Environmental Research) ;
- No, Kyoung-Tai (Bioinformatics and Molecular Design Research Center)
- 투고 : 2011.11.22
- 심사 : 2011.12.20
- 발행 : 2012.02.20
초록
We applied several machine learning methods for developing QSAR models for prediction of acute toxicity to fathead minnow. The multiple linear regression (MLR) and artificial neural network (ANN) method were applied to predict 96 h
키워드
QSAR;Fathead minnow;Acute toxicity;Consensus model;ANN
파일
참고문헌
- Pedersen, F.; Bruijn, J. D.; Munn, S.; Leeuwen, K. V. Assessment of Additional Testing Needs Under REACH. Effects of (Q)SARS, Risk Based Testing and Voluntary Industry Initiatives; European Commission: 2003.
- Ankley, G. T.; Villeneuve, D. L. Aquat. Toxicol. 2006, 78(1), 91. https://doi.org/10.1016/j.aquatox.2006.01.018
- Casalegno, M.; Benfenati, E.; Sello, G. Chem. Res. Toxicol. 2005, 18(4), 740. https://doi.org/10.1021/tx049665v
- Martin, T. M.; Young, D. M. Chem. Res. Toxicol. 2001, 14(10), 1378. https://doi.org/10.1021/tx0155045
- Hoover, K. R.; Acree, W. E., Jr.; Abraham, M. H. Chem. Res. Toxicol. 2005, 18(9), 1497. https://doi.org/10.1021/tx050164z
- Gini, G.; Craciun, M. V.; Konig, C.; Benfenati, E. J. Chem. Inf. Comput. Sci. 2004, 44(6), 1897. https://doi.org/10.1021/ci0401219
- Mazzatorta, P.; Benfenati, E.; Neagu, C. D.; Gini, G. J. Chem. Inf. Comput. Sci. 2003, 43(2), 513. https://doi.org/10.1021/ci025585q
- Mazzatorta, P.; Benfenati, E.; Neagu, D.; Gini, G. J. Chem. Inf. Comput. Sci. 2002, 42(5), 1250. https://doi.org/10.1021/ci025520n
- Mazzatorta, P.; Vraèko, M.; Jezierska, A.; Benfenati, E. J. Chem. Inf. Comput. Sci. 2003, 43(2), 485. https://doi.org/10.1021/ci0256182
- Papa, E.; Villa, F.; Gramatica, P. J. Chem. Inf. Model. 2005, 45(5), 1256. https://doi.org/10.1021/ci050212l
- Ren, S. Chemosphere 2003, 53(9), 1053. https://doi.org/10.1016/S0045-6535(03)00573-3
- Russom, C. L.; Bradbury, S. P.; Broderius, S. J.; Hammermeister, D. E.; Drummond, R. A. Environ. Toxicol. Chem. 1997, 16(5), 948. https://doi.org/10.1897/1551-5028(1997)016<0948:PMOTAF>2.3.CO;2
- Council Directive 92/32/EEC of 30 April 1992 amending for the seventh time Directive 67/548/EEC on the approximation of the laws, regulations and administrative provisions relating to the classification, packaging and labelling of dangerous substances. 1992; Vol. Off. J. L 154.
- EPA Fathead Minnow Acute Toxicity Database (EPAFHM). http:/ /www.epa.gov/ncct/dsstox/index.html. (accessed Apr., 2006).
- Lee, S. K.; Park, S. H.; Lee, I. H.; No, K. T. PreADMET 2.0; BMDRC: Seoul, Korea, 2007.
- Golbraikh, A.; Tropsha, A. Molecular Diversity 2000, 5(4), 231. https://doi.org/10.1023/A:1021372108686
- Riedmiller, M.; Braun, H. In A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm; Ruspini, H., Ed.; Proceedings of the IEEE International Conference on Neural Networks (ICNN) San Francisco: San Francisco, 1993; p 586.
- Cerius2, 4.1; Accelrys: San Diego, USA, 2005.
피인용 문헌
- QSAR Approach for Toxicity Prediction of Chemicals Used in Electronics Industries vol.40, pp.2, 2014, https://doi.org/10.5668/JEHS.2014.40.2.105