DOI QR코드

DOI QR Code

Effect of Dietary Cation-Anion Difference during Prepartum and Postpartum Periods on Performance, Blood and Urine Minerals Status of Holstein Dairy Cow

  • Razzaghi, A. ;
  • Aliarabi, H. ;
  • Tabatabaei, M.M. ;
  • Saki, A.A. ;
  • Valizadeh, R. ;
  • Zamani, P.
  • Received : 2011.09.12
  • Accepted : 2011.11.14
  • Published : 2012.04.01

Abstract

Twenty four periparturient cows were used to determine the effects of DCAD on acid-base balance, plasma and urine mineral concentrations, health status, and subsequent lactation performance. Each group of 12 cows received either a diet containing -100 DCAD or +100 DCAD for 21 d prepartum. Both anionic and cationic groups were divided into two groups, one received a +200 DCAD and the other +400 DCAD diet for 60 d postpartum. Prepartum reduction of DCAD decreased DMI, urinary and blood pH, urinary concentrations of Na or K and increased plasma and urinary Ca, Mg, Cl and S. Also cows fed -100 DCAD diet consumed the most dry matter in the first 60 d after calving. Postpartum +400 DCAD increased milk fat and total solid percentages, urinary and blood pH and urinary Na and K concentrations, but urinary Ca, P, Cl and S contents decreased. Greater DMI, FCM yields were observed in cows fed a diet of +400 DCAD than +200 DCAD. No case of milk fever occurred for any diets but feeding with a negative DCAD diet reduced placenta expulsion time. In conclusion, feeding negative DCAD in late gestation period and high DCAD in early lactation improves performance and productivity of dairy cows.

Keywords

Dietary Cation-anion Difference;Lactation;Acid-base Balance;Calcium;Health Status;Dairy Cow

References

  1. Allen, M. C. 1997. Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. J. Dairy Sci. 80:1447-1462. https://doi.org/10.3168/jds.S0022-0302(97)76074-0
  2. AOAC. 1990. Official methods of analysis. 15th edn. Association of Official Analytical Chemists, Arlington, Virginia, USA.
  3. Apper-Bossard, E., J. L. Peyraud, P. Faverdin and F. Meschy. 2006. Changing dietary cation anion difference for dairy cows fed with two contrasting levels of concentrate in diets. J. Dairy Sci. 89:749-760. https://doi.org/10.3168/jds.S0022-0302(06)72136-1
  4. Beede, D. K. 1995. Practical application of cation-anion difference in dairy rations. In Proceedings of the 1995 Maryland Nutrition. Conf For Feed Manuf., Univ. Maryland, College Park, MD. pp. 80-89.
  5. Beede, D. K., C. A. Risco, G. A. Donovan, C. Wang, L. F. Archbald and W. K. Sanchez. 1992. Nutritional management of the late pregnant dry cow with particular reference to dietary cation-anion difference and calcium supplementation. In Proceedings of 24th Annual Convention American Association of Bovine Practitioners, Orlando, FL Frontier Printers, Stillwater, OK. p. 51.
  6. Block, E. 1984. Manipulating dietary anions and cations for prepartum dairy cows to reduce incidence of milk fever. J. Dairy Sci. 67:2939-2948. https://doi.org/10.3168/jds.S0022-0302(84)81657-4
  7. Chamberlaine, A. T. and J. M. Wilconson. 1996. Minerals and vitamins in feeding the dairy cow. Chalcombe Publications, Great Britain. pp. 79-94.
  8. Chan, P. S., J. W. West and J. K. Bernard. 2006. Effect of prepartum dietary calcium on intake and serum and urinary mineral concentrations of cows. J. Dairy Sci. 89:704-713. https://doi.org/10.3168/jds.S0022-0302(06)72133-6
  9. Chan, P. S., J. K. West, J. K. Bernard and J. M. Fernandes. 2005. Effects of dietary cation-anion difference on intake, milk yield, and blood components of the early lactation cow. J. Dairy Sci. 88:4384-4392. https://doi.org/10.3168/jds.S0022-0302(05)73125-8
  10. Charbanneau, E., D. Pellerin and G. R. Oetzel. 2006. Impact of lowering dietary cation-anion difference in nonlactating dairy cows: A meta-analysis. J. Dairy Sci. 89:537-548. https://doi.org/10.3168/jds.S0022-0302(06)72116-6
  11. Curtis, C. R., H. N. Erb, C. J. Sniffen and R. D. Smith. 1983. Epidemiology of parturient paresis: predisposing factors with emphasis on dry cow feeding and management. J. Dairy Sci. 67:817-825. https://doi.org/10.3168/jds.S0022-0302(84)81372-7
  12. DeGaris, P. J. and I. J. Lean. 2008. Milk fever in dairy cows: A review of pathophysiology and control principles. Vet. J. 176:58-69. https://doi.org/10.1016/j.tvjl.2007.12.029
  13. Delaquis, A. M. and E. Block. 1995a. Acid base status, renal function, water, and macromineral metabolism of dry cows fed diets differing in cation anion difference. J. Dairy Sci. 78:604-619. https://doi.org/10.3168/jds.S0022-0302(95)76671-1
  14. Delaquis, A. M. and E. Block. 1995b. The effects of changing ration ingredients on acid base status, renal function, and macromineral metabolism. J. Dairy Sci. 78:2024-2039. https://doi.org/10.3168/jds.S0022-0302(95)76828-X
  15. Frick, K. K., N. S. Krieger, K. Nehrke and D. A. Bushinsky. 2009. Metabolic acidosis increases intracellular calcium in bone cells through activation of the proton receptor OGR1. J. Bone Miner. Res. 24:305-313. https://doi.org/10.1359/jbmr.081015
  16. Gaynor, P. J., F. J. Mueller, J. K. Miller, N. Ramsey, J. P. Goff and R. L. Horst. 1989. Parturient hypocalcemia in Jersey cows fed alfalfa haylage based diets with different cation to anion rations. J. Dairy Sci. 72:2525-2531. https://doi.org/10.3168/jds.S0022-0302(89)79392-9
  17. Goff, J. P., R. L. Horst, F. J. Mueller, J. K. Miller, J. A. Kiess and H. H. Dowlen. 1991. Addition of chloride to a prepartal diet high in cations increase 1,25-dihydroxyvitamin D response to hypocalcemia preventing milk fever. J. Dairy Sci. 74:3863-3871. https://doi.org/10.3168/jds.S0022-0302(91)78579-2
  18. Hansen, T. T., R. L. JOjensen and S. Ostergaard. 2002. Milk fever control principles: A review. Acta Vet. Scand. 43:1-19. https://doi.org/10.1186/1751-0147-43-1
  19. Goff, J. P. and R. L. Horst. 1997. Physiological changes at parturition and their relationship to metabolic disorders. J. Dairy Sci. 80:1260-1268. https://doi.org/10.3168/jds.S0022-0302(97)76055-7
  20. Goff, J. P. and R. L. Horst. 1998. Use of hydrochloric acid as a source of anions for prevention of milk fever. J. Dairy Sci. 81:2874-2880. https://doi.org/10.3168/jds.S0022-0302(98)75847-3
  21. Goff, J. P. 2008. The monitoring, prevention, and treatment of milk fever and subclinical hypocalcemia in dairy cows. Vet. J. 176:50-57. https://doi.org/10.1016/j.tvjl.2007.12.020
  22. Grohn, Y. T., H. N. Erb, C. E. McCulloch and H. S. Saloniemi. 1989. Epidemiology of metabolic disorders in dairy cattle: Associations among host characteristics, disease and production. J. Dairy Sci. 72:1876-1885. https://doi.org/10.3168/jds.S0022-0302(89)79306-1
  23. Horst, R. L., J. P. Goff, T. A. Reinhardt and D. R. Boxton. 1997. Strategies for preventing milk fever in dairy cattle. J. Dairy Sci. 80:1269-1280. https://doi.org/10.3168/jds.S0022-0302(97)76056-9
  24. Horst, R. L., J. P. Goff and T. A. Reinhardt. 1994. Calcium and vitamin D metabolism in the dairy cow. J. Dairy Sci. 77:1936-1951. https://doi.org/10.3168/jds.S0022-0302(94)77140-X
  25. Hu, W. and M. R. Murphy. 2004. Dietary cation-anion difference on performance and acid-base status of lactating dairy cows. J. Dairy Sci. 87:2222-2229. https://doi.org/10.3168/jds.S0022-0302(04)70042-9
  26. Hu, W., J. R. Limin Kung and M. R.Murphy. 2007. Relationship between dry matter intake and acid-base status of lactating dairy cows as manipulated by dietary cation-anion difference. Anim. Feed Sci. Technol. 136:216-225. https://doi.org/10.1016/j.anifeedsci.2006.09.013
  27. Hu, W., M. R. Murphy, P. D. Constable and E. Block. 2007a. Dietary cation-anion difference and dietary protein effects on performance and acid-base status of dairy cows in early lactation. J. Dairy Sci. 90:3355-3366. https://doi.org/10.3168/jds.2006-514
  28. Hu, W., M. R. Murphy, P. D. Constable and E. Block. 2007b. Dietary cation-anion difference effects on performance and acid-base status of dairy cows postpartum. J. Dairy Sci. 90:3367-3375. https://doi.org/10.3168/jds.2006-515
  29. Joyce, P. W., W. K. Sanchez and J. P. Goff. 1997. Effect of anionic salts in prepartum diets based on alfalfa. J. Dairy Sci. 80:2866-2875. https://doi.org/10.3168/jds.S0022-0302(97)76251-9
  30. Kelton, D. F., K. D. Lissemore and R. E.Martin. 1998. Recommendations for recording and calculating the incidence of selected clinical diseases of dairy cattle. J. Dairy Sci. 81:2502-2509. https://doi.org/10.3168/jds.S0022-0302(98)70142-0
  31. Kilmer, L. H., L. D. Muller and T. J. Snyder. 1981. Addition of sodium bicarbonate to rations of postpartum dairy cows:physiology and metabolic effects. J. Dairy Sci. 64:2357.
  32. Kimura, K., J. P. Goff, M. E. Kehrli and T. A. Reinhardt. 2002. Decreased neutrophil function as a cause of retained placenta in dairy cattle. J. Dairy Sci. 85:544-550. https://doi.org/10.3168/jds.S0022-0302(02)74107-6
  33. Kume, S., K. Toharmat, K. Nonaka, T. Oshiat, T. Nakui and J. Ternouth. 2001. Relationship between crude protein and mineral concentrations in alfalfa and value of alfalfa silage as a mineral source for priparturient cows. Anim. Feed Sci. Technol. 93:157-168. https://doi.org/10.1016/S0377-8401(01)00281-4
  34. Lean, I. J., P. J. DeGaris, D. M. Mcneil and E. Block. 2006. Hypocalcemia in dairy cows: Meta-analysis and dietary cation-anion difference theory revisited. J. Dairy Sci. 89:669-684. https://doi.org/10.3168/jds.S0022-0302(06)72130-0
  35. Li, F. C., H. F. Liu and Z. H. Wang. 2008. Effect of dietary cation-anion difference on calcium, nitrogen metabolism and relative blood traits of dry Holstein cows. Anim. Feed Sci. Technol. 142:185-191. https://doi.org/10.1016/j.anifeedsci.2007.07.003
  36. Liesegang, A., C. Chiappi, J. Risteli, J. Kessler and H. D. Hess. 2007. Influence of different calcium contents in diets supplemented with anionic salts on bone metabolism in periparturient dairy cows. J. Anim. Physiol. Anim. Nutr. 91:120-129. https://doi.org/10.1111/j.1439-0396.2006.00651.x
  37. Moore, S. J., M. J. Vandehaar, K. Sharma, T. F. Pilbcam, D. K. Beede, F. Bucholtz, J. S. Liesman, R. L. Horst and J. P. Goff. 2000. Effect of altering dietary cation-Anion difference on calcium and energy metabolism in peripartum cows. J. Dairy Sci. 83:2095-2104. https://doi.org/10.3168/jds.S0022-0302(00)75091-0
  38. National Research Council. 2001. Nutrient requirements of dairy cattle. 7th Ed. National Academy of Sciences, Washington, DC, USA.
  39. Oetzel, G. R., J. D. Olson, C. R. Curtis and M. J. Fettman. 1988. Ammonium chloride and amonium sulfate for prevention of parturient paresis in dairy cows. J. Dairy Sci. 71:3302-3309. https://doi.org/10.3168/jds.S0022-0302(88)79935-X
  40. Pehrson, B., C. Svensson, I. Gruvaeus and M. Vrikki. 1999. The influence of acidic diets on the acid-base balance of dry cows and the effect of fertilization on the mineral content of grass. J. Dairy Sci. 82:1310-1316. https://doi.org/10.3168/jds.S0022-0302(99)75354-3
  41. Roche, J. R. 1999. Dietary cation-anion difference in pasture-fed dairy cows. Ph.D. Thesis, National University of Ireland.
  42. Roche, J. R., D. Dally, P. Moate, C. Grainger, M. Rath and F. O. Mara. 2003. Dietary cation-anion difference and the health and production of pastured-fed dairy cows 2. Nonlactating periparturient cows. J. Dairy Sci. 86:979-987. https://doi.org/10.3168/jds.S0022-0302(03)73681-9
  43. Roche, J. R., S. Peth and J. K. Kay. 2005. Manipulating the dietary cation anion difference via drenching to early lactating dairy cows grazing pasture. J. Dairy Sci. 88:264-276. https://doi.org/10.3168/jds.S0022-0302(05)72684-9
  44. Sanchez, W. K. and D. K. Beede. 1994. Interactions of sodium, potassium, and chloride on lactation, acid-base status, and mineral concentrations. J. Dairy Sci. 77:1661-1675. https://doi.org/10.3168/jds.S0022-0302(94)77108-3
  45. Sanchez, W. K., D. K. Beede and J. A. Cornell. 1997. Dietary mixtures of sodium bicarbonate, sodium chloride, and potassium chloride: Effects on lactational performance, acid-base status, and mineral metabolism of Holstein cows. J. Dairy Sci. 80:1207-1216. https://doi.org/10.3168/jds.S0022-0302(97)76049-1
  46. Sanchez, W. K. 2003.The latest in dietary cation-anion difference (DCAD) Nutrition. In: Proceeding of 43nd Annual Dairy Cattle Day. 26th March, Main Theater, University of California. Davis Campus.
  47. SAS Institute Inc. 2004. SAS/SAT user's guide: Version 9. 2th edn. SAS Institute Inc., Cary, North Carolina.
  48. Seifi, H. A., M. Mohri and J. Kalamati-Zadeh. 2004. Use of pre-partum urine pH to predict the risk of milk fever in dairy cows. Vet. J. 167:281-285. https://doi.org/10.1016/S1090-0233(03)00114-X
  49. Shahzad, M. A., M. Sarwar and M. Nisa. 2008. Influence of varying dietary cation anion difference on serum minerals, mineral balance and hypocalcemia in Nili Ravi buffaloes. Livest. Sci. 113:52-61. https://doi.org/10.1016/j.livsci.2007.02.013
  50. Spanghero, M. 2004. Prediction of urinary and blood pH in non-lactating dairy cows fed anionic diets. Anim. Feed Sci. Technol. 116:83-92. https://doi.org/10.1016/j.anifeedsci.2004.04.002
  51. Stacy, B. B. and B. W. Wilson. 1970. Acidosis and hypercalciuria: Renal mechanisms affecting calcium, magnesium and sodium excretion in sheep. J. Physiol. 210:549-564. https://doi.org/10.1113/jphysiol.1970.sp009226
  52. Takagi, H. and E. Block. 1991. Effects of reducing dietary cation-anion balance on calcium kinetics in sheep. J. Dairy Sci. 74:4225-4237. https://doi.org/10.3168/jds.S0022-0302(91)78618-9
  53. Tucker, W. B., G. A. Harrison and R. W. Hemken. 1988. Influence of dietary cation-anion balance on milk, blood, urine, and rumen fluid in lactating dairy cattle. J. Dairy Sci. 71:346-354. https://doi.org/10.3168/jds.S0022-0302(88)79563-6
  54. Tucker, W. B., J. F. Hogue. D. F. Waterman, T. S. Swenson, Z. Xin, R. W. Hemken, J. A. Jackson, J. D. Adams and L. J. Spicer. 1991. Role of sulfur and chloride in the dietary cation-anion balance equation for lactating dairy cattle. J. Anim. Sci. 69:1205-1213.
  55. Tucker, W. B., J. F. Hogue, G. D. Adams, M. Aslam, I. S. Shin and G. Morgan. 1992. Influence of dietary cation-anion balance during the dry period on the occurrence of parturient paresis in cows fed excess calcium. J. Anim. Sci. 70:1238-1250.
  56. Vagnoni, D. B. and G. R. Oetzel. 1998. Effects of dietary cation-anion difference on the acid-base status of dry cows. J. Dairy Sci. 81:1643-1652. https://doi.org/10.3168/jds.S0022-0302(98)75732-7
  57. Van Soest, P. J., P. J. Robertson and H. B. Lewis. 1991. Methods of dietary fiber, NDF and non-starch polysaccharides in relation to animal material. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  58. Waterman, D. F., T. S. Swenson, W. B. Tucker and R. T. Henkin. 1991. Role of magnesium in the dietary cation-anion balance equation for ruminants. J. Dairy Sci. 74:1866-1873. https://doi.org/10.3168/jds.S0022-0302(91)78352-5
  59. West, J. K., B. G. Mullinix and T. G. Sandifer. 1991. Changing dietary electrolyte balance for dairy cows in cool and hot environments. J. Dairy Sci. 74:1662. https://doi.org/10.3168/jds.S0022-0302(91)78329-X
  60. West, J. W., K. D. Haydon, B. G. Mullinix and T. G. Sandifer. 1992. Dietary cation-anion balance and cation source effects on production and acid-base status of heat stressed cows. J. Dairy Sci. 75:2776. https://doi.org/10.3168/jds.S0022-0302(92)78041-2
  61. Wildman, C. D., J. W. West and J. K. Bernard. 2007. Effect of dietary cation-anion difference and dietary crude protein on performance of lactating dairy cows during hot weather. J. Dairy Sci. 90:1842-1850. https://doi.org/10.3168/jds.2006-546
  62. Wu, W. X., J. X. Liu, G. Z. Xu and J. A. Ye. 2008. Calcium homeostasis acid-base balance, and health status in periparturient Holstein cows fed diets with low cation-anion difference. Livest. Sci. 117:7-14. https://doi.org/10.1016/j.livsci.2007.11.005

Cited by

  1. Dietary cation and anion difference: Effects on milk production and body fluid distribution in lactating dairy goats under tropical conditions pp.13443941, 2017, https://doi.org/10.1111/asj.12897
  2. Effects of low dietary cation-anion difference induced by ruminal ammonium chloride infusion on performance, serum, and urine metabolites of lactating dairy cows vol.31, pp.5, 2018, https://doi.org/10.5713/ajas.17.0530