DOI QR코드

DOI QR Code

Hemato-biochemical and Cortisol Profile of Holstein Growing-calves Supplemented with Vitamin C during Summer Season

  • Kim, Jong-Hyeong (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University) ;
  • Mamuad, Lovelia L. (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University) ;
  • Yang, Chul-Ju (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University) ;
  • Kim, Seon-Ho (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University) ;
  • Ha, Jong-K. (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Wang-Shik (College of Applied Life Sciences, Jeju National University) ;
  • Cho, Kwang-Keun (Department of Animal Resources Technology, Gyeongnam National University) ;
  • Lee, Sang-Suk (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University)
  • 투고 : 2011.11.21
  • 심사 : 2012.01.11
  • 발행 : 2012.03.01

초록

Effect of vitamin C (VC) on biochemical, hematological and cortisol profile of growing Holstein calves during summer was investigated. Eighteen calves between 14 and 16 weeks of age were divided equally into two groups. One group received a diet supplemented with VC (20 g/d) for 60 days, while other non-supplemented diet fed group served as a control (CON). The temperature humidity index (THI) was recorded and computed during the experiment. From days 0 to 60, the THI exceeded 70. Blood samples were collected from the jugular vein of each calf at days 0, 15, 30, 45 and 60. Serum albumin and total protein decreased (p<0.05) in CON and VC calves with age. Serum glutamic-oxaloacetic transaminase concentrations were not affected by treatments. Serum creatinine, albumin and glutamic-pyruvic transaminase concentrations were higher in calves in the VC group than the CON group. While red blood cells, hemoglobin and hematocrit were lower (p<0.05) in VC calves, mean corpuscular volume, mean corpuscular hemoglobin, red blood cell distribution width and mean platelet volume were higher (p<0.05) in these VC supplemented calves. Leukocyte parameters including white blood cells and full term for lymphocytes were not affected by the treatments. Also, serum cortisol was not affected by treatments. At day 15, 30 and 45, the total VC in plasma was higher (p<0.05) in calves fed with VC. In conclusion, serum cortisols were not affected by plasma VC concentration, while some blood parameters were positively influenced in calves fed with VC.

키워드

Vitamin C;Hemato-biochemical;Cortisol;Growing Calves

참고문헌

  1. Ames, B. N., M. K. Shigenaga and T. M. Hagen. 1993. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. 90(17):7915-7922. https://doi.org/10.1073/pnas.90.17.7915
  2. Bouda, J., P. Jagos, R. Dvorak and J. Ondrova. 1980. Vitamin E and C in the blood plasma of cows and their calves fed from buckets. Acta Vet. Brno. Journal of the University of Veterinary and Pharmaceutical Sciences in Brno, Czech Republic 49:53-58.
  3. Braun, L., T. Garzo, J. Mandl and G. Banhegyi. 1994. Ascorbic acid synthesis is stimulated by enhanced glycogenolysis in murine liver. FEBS Lett. 352(1):4-6. https://doi.org/10.1016/0014-5793(94)00905-8
  4. Broucek, J. and K. Kovalcik. 1989. Einfluss der übermässigen künstlichen UV - Strahlung auf die Messgrossen des Blutbildes und auf die Phagozytose bei Kalbern. Dtsch. Tierärztl. Wschr. 96:318-320.
  5. Chaiyotwittayakun, A., R. J. Erskine, P. C. Bartlett, T. H. Herd, P. M. Sears and R. J. Harmont. 2002. The effect of ascorbic acid and L-histidine therapy on acute mammary inflammation in dairy cattle. J. Dairy Sci. 85(1):60-67. https://doi.org/10.3168/jds.S0022-0302(02)74053-8
  6. Cole, C. L., R. A. Rasmussen and F. Thorp. 1944. Dermatosis in the ears, neck and shoulders in young calves. Vet. Med. 39:204-211.
  7. Cummins, K. A. and C. J. Brunner. 1989. Dietary ascorbic acid and immune response in dairy calves. J. Dairy Sci. 72(1):129-134. https://doi.org/10.3168/jds.S0022-0302(89)79088-3
  8. Cummins, K. A. and C. J. Brunner. 1991. Effect of calf housing on plasma ascorbate and endocrine and immune function. J. Dairy Sci. 74(5):1582-1588. https://doi.org/10.3168/jds.S0022-0302(91)78320-3
  9. Dallak, M. 2009. Camel's milk protects against cadmium chloride-induced hypocromic microcytic anemia and oxidative stress in red blood cells of white albino rats. Am. J. Pharmacol. Toxicol. 4:136-143. https://doi.org/10.3844/ajptsp.2009.136.143
  10. Doornenbal, H., A. K. Tong and N. L. Murray. 1988. Reference values of blood parameters in beef cattle of different ages and stages of lactation. Can. J. Vet. Res. 52(1):99-105.
  11. Duncan, C. W., C. F. Huffman, R. Mitchell Jr. and J. T. Reid. 1944. Symptom of scurvy observed in a herd of cattle. J. Dairy Sci. 24:636.
  12. el-Sayed, M. S. 1996. Effects of exercise on blood coagulation, fibrinolysis and platelet aggregation. Sports Med. 22(5):282-298. https://doi.org/10.2165/00007256-199622050-00002
  13. Encarnacion, D., M. M. Devine and J. M. Rivers. 1974. Influence of vitamin C nutriture and inanition on ACTH stimulated release of adrenal corticosteroids in guinea pigs. Int. J. Vitam. Nutr. Res. 44(3):309-318.
  14. Feldman, B. R., J. G. Zinkl and N. C. Jain. 2006. Schalm's veterinary hematology. Blackwell Publishing Professional, 2121 State Avenue, Ames, Iowa 50014 USA.
  15. Ha, T. Y., M. Otsuka and N. Arakawa. 1994. Ascorbate indirectly stimulates fatty acid utilization in primary cultured guinea pig hepatocytes by enhancing carnitine synthesis. J. Nutr. 124(5):732-737.
  16. Hadorn, U., H. Hammon, R. M. Bruckmaier and J. W. Blum. 1997. Delaying colostrum intake by one day has important effects on metabolic traits and on gastrointestinal and metabolic hormones in neonatal calves. J. Nutr. 127(10):2011-2023.
  17. Harmon, R. J., M. Lu, D. S. Trammel and B. A. Smith. 1997. Influence of heat stress and calving on antioxidant activity in bovine blood. J. Dairy Sci. 80:264. https://doi.org/10.3168/jds.S0022-0302(97)75934-4
  18. Huber, J. T. 1996. Amelioration of heat stress in dairy cattle. In: Progress in Dairy Science (Ed. C. J. C. Philips). CAB International, Oxon, UK.
  19. Johnson, H. D. 1980. Environmental management of cattle to minimize the stress of climate changes. Int. J. Biometeorol. 24:65-78. https://doi.org/10.1007/BF02245543
  20. Lee, J. A., J. D. Roussel and J. F. Beatty. 1976. Effect of temperature-season on bovine adrenal cortical function, blood cell profile, and milk production. J. Dairy Sci. 59(1):104-108. https://doi.org/10.3168/jds.S0022-0302(76)84163-X
  21. Lundquist, N. S. and P. H. Phillips. 1943. Certain dietary factors essential for the growing calf. J. Dairy Sci. 26(11):1023-1030. https://doi.org/10.3168/jds.S0022-0302(43)92802-4
  22. McDowell, L. R. 1989. Vitamins in animal nutrition-comparative aspects to humans and farm animals. Academic Press New York.
  23. McKee, J. S. and P. C. Harrison. 1995. Effects of supplemental ascorbic acid on the performance of broiler chickens exposed to multiple concurrent stressors. Poult. Sci. 74(11):1772-1785. https://doi.org/10.3382/ps.0741772
  24. Miller, J. K., E. Brzezinska-Slebodzinska and F. C. Madsen. 1993. Oxidative stress, antioxidants, and animal function. J. Dairy Sci. 76(9):2812-2823. https://doi.org/10.3168/jds.S0022-0302(93)77620-1
  25. Miller, S. C., B. E. LeRoy, H. L. Tarpley, P. J. Bain and K. S. Latimer. 2004. A brief review of creatinine concentration. Veterinary Clinical Pathology Clerkship Program.
  26. Mitchell, J. B. and A. Russo. 1983. Thiols, thiol depletion, and thermosensitivity. Radiat. Res. 95(3):471-485. https://doi.org/10.2307/3576094
  27. Mohri, M., K. Sharifi and S. Eidi. 2007. Hematology and serum biochemistry of Holstein dairy calves: Age related changes and comparison with blood composition in adults. Res. Vet. Sci. 83(1):30-39. https://doi.org/10.1016/j.rvsc.2006.10.017
  28. Padilla, L., T. Matsui, Y. Kamiya, M. Kamiya, M. Tanaka and H. Yano. 2006. Heat stress decreases plasma vitamin C concentration in lactating cows. Livest. Sci. 101(1-3):300-304. https://doi.org/10.1016/j.livprodsci.2005.12.002
  29. Pardue, S. L. and J. P. Thaxton. 1984. Evidence for amelioration of steroid-mediated immunosuppression by ascorbic acid. Poult. Sci. 63(6):1262-1268. https://doi.org/10.3382/ps.0631262
  30. Patriarca, M., A. Menditto and G. Morisi. 1991. Determination of ascorbic acid in blood plasma or serum and in seminal plasma using a simplified sample preparation and high-performance liquid chromatography coupled with UV detection. J. Liq. Chromatogr. 14(2):297-312. https://doi.org/10.1080/01483919108049616
  31. Riker, J. T., 3rd, T. W. Perry, R. A. Pickett and C. J. Heidenreich. 1967. Influence of controlled temperatures on growth rate and plasma ascorbic acid values in swine. J. Nutr. 92(1):99-103.
  32. Sahin, K., M. Onderci, N. Sahin, M. F. Gursu and O. Kucuk. 2003. Dietary vitamin C and folic acid supplementation ameliorates the detrimental effects of heat stress in Japanese Quail. J. Nutr. 133(6):1882-1886.
  33. Sauberlich, H. E. 1994. Pharmacology of vitamin C. Annu. Rev. Nutr. 14:371-391. https://doi.org/10.1146/annurev.nu.14.070194.002103
  34. Schorah, C. J. 1992. The transport of vitamin C and effects of disease. Proc. Nutr. Soc. 51(2):189-198. https://doi.org/10.1079/PNS19920029
  35. Schwager, J. and J. Schulze. 1998. Modulation of interleukin production by ascorbic acid. Vet. Immunol. Immunopathol. 64(1):45-57. https://doi.org/10.1016/S0165-2427(98)00120-2
  36. Seifi, H. A., M. Mohri, M. Delaramy and M. Harati. 2010. Effect of short term over-supplementation of ascorbic acid on hematology, serum biochemistry, and growth performance of neonatal dairy calves. Food Chem. Toxicol. 48(8-9):2059-2062. https://doi.org/10.1016/j.fct.2010.05.006
  37. Shilotri, P. G. and K. S. Bhat. 1977. Effect of mega doses of vitamin C on bactericidal ativity of leukocytes. Am. J. Clin. Nutr. 30(7):1077-1081.
  38. Singh, S. P. and W. M. Newton. 1978. Acclimation of young calves to high temperatures: physiologic responses. American J. Vet. Res. 39(5):795-797.
  39. Wegger, I. and J. Mustgaard. 1982. Age related variations in plasma ascorbic acid in calves. Vet. Landbohojsk. Inst. Steriliteforsk. Asberet. 325.
  40. Weiss, W. P. 2001. Effect of dietary vitamin C on concentrations of ascorbic acid in plasma and milk. J. Dairy Sci. 84(10):2302-2307. https://doi.org/10.3168/jds.S0022-0302(01)74677-2
  41. Yates, D. T., T. T. Ross, D. M. Hallford, L. J. Hill and R. L. Wesley. 2008. Comparison of salivary and serum cortisol concentration in response to ACTH challenge in sheep. American Society of Animal Science 59:261-264.
  42. Zhou, X., M. Xie, C. Niu and R. Sun. 2003. The effects of dietary vitamin C on growth, liver vitamin C and serum cortisol in stressed and unstressed juvenile soft-shelled turtles (Pelodiscus sinensis). Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 135(2):263-270. https://doi.org/10.1016/S1095-6433(03)00066-7

피인용 문헌

  1. Rumen fermentation and performance of Hanwoo steers fed total mixed ration with Korean rice wine residue vol.58, pp.1, 2016, https://doi.org/10.1186/s40781-016-0084-6
  2. Stress-related hormonal alterations, growth and pelleted starter intake in pre-weaning Holstein calves in response to thermal stress pp.1432-1254, 2017, https://doi.org/10.1007/s00484-017-1458-2
  3. Vitamin C supplementation improved the efficacy of foot-and-mouth disease vaccine pp.1465-3443, 2017, https://doi.org/10.1080/09540105.2017.1406459
  4. Impact of confinement housing on study end-points in the calf model of cryptosporidiosis vol.12, pp.4, 2018, https://doi.org/10.1371/journal.pntd.0006295