DOI QR코드

DOI QR Code

Characterization of Volatile Organic Compounds in New Residential Buildings Before Moving-in

  • Shin, Seung-Ho (Department of Environmental Engineering, Kyungpook National University) ;
  • Jo, Wan-Kuen (Department of Environmental Engineering, Kyungpook National University)
  • Received : 2011.11.02
  • Accepted : 2012.01.12
  • Published : 2012.01.31

Abstract

This study investigated the characteristics of selected volatile organic compounds(VOCs) in newly-finished residential buildings, before the occupants moved in. This investigation was carried out by measuring the indoor and outdoor concentrations of selected VOCs before the occupants moved in and by utilizing an indoor mass balance model. Among 25 target VOCs, five aromatics(benzene, ethyl benzene, toluene, m,p-xylene, and o-xylene) were detected in all samples of both indoor and outdoor air. Toluene was most abundant VOC in the indoor air of new apartments, with a median value of 168 mg $m^{-3}$. Unlike other VOCs, halogenated compounds would not be significantly emitted from building materials. The indoor air concentrations of all selected VOCs, except for 1,3,5-trimethyl benzene, exhibited significant correlations each other, while for outdoor air concentrations, five aromatics only were significantly correlated between them. The emission rate of toluene was higher for the current study(median value, 76.8 mg $m^{-2}\;h^{-1}$) than for a previous study, while the emission rates of limonene, a-pinene and b-pinene(geometric means of 2.4, 13.8 and 9.6 mg $m^{-2}\;h^{-1}$, respectively) were lower and the emission rates of m,p-xylene and 2-butanone(geometric means of 10.9 and 21.3 mg $m^{-2}\;h^{-1}$, respectively) were similar. Although there were a few exceptions, the emission strengths are likely proportional to indoor temperature, and appear to reversely proportional to air exchange rate.

Keywords

Emission characterization;Building materials;Indoor model;New apartment;Air exchange rate

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Delfino, R. J., Gong, H., Linn, W. S., Hu, Y., Pellizzari, E. D., 2003, Respiratory symptoms and peak expiratory flow in children with asthma in relation to volatile organic compounds in exhaled breath and ambient air, J. Expo. Anal. Environ. Epidemiol., 13, 348-363. https://doi.org/10.1038/sj.jea.7500287
  2. Deng, Q., Yang, X., Zhang, J. S., 2012, Key factor analysis of VOC sorption and its impact on indoor concentrations: the role of ventilation, Build. Environ., 47, 182-187. https://doi.org/10.1016/j.buildenv.2011.07.026
  3. Edwards, R. D., Schweizer, C., Jantunen, M., Lai, H. K., Bayer-Oglesby, L., Katsouyanni, K., Nieuwenhuijsen, M., Saarela, K., Sram, R., Kunzli, N., 2005, Personal exposures to VOC in the upper end of the distribution-relationships to indoor, outdoor and workplace concentrations, Atmos. Environ., 39, 2299-2307. https://doi.org/10.1016/j.atmosenv.2004.12.026
  4. Geiss, O., Giannopoulos, G., Tirendi, S., Barrero- Moreno, J., Larsen, B. R., Kotzias, D., 2011, The AIRMEX study - VOC measurements in public buildings and schools/kindergartens in eleven European cities: statistical analysis of the data, Atmos. Environ., 45, 3676-3684. https://doi.org/10.1016/j.atmosenv.2011.04.037
  5. Gokhale, S., Kohajda, T., Schlink, U., 2008, Source apportionment of human personal exposure to volatile organic compounds in homes, offices and outdoors by chemical mass balance and genetic algorithm receptor models, Sci. Total Environ., 407, 122-138. https://doi.org/10.1016/j.scitotenv.2008.08.025
  6. Han, K. H., Zhang, J. S., Knudsen, H. N., Wargocki, P., Chen, H., Varshney, P. K., Guo, B., 2011, Development of a novel methodology for indoor emission source identification, Atmos. Environ., 45, 3034-3045. https://doi.org/10.1016/j.atmosenv.2011.03.021
  7. Hodgson, A. T., Rudd, A. F., Beal, D., Chandra, S., 2000, Volatile organic compound concentrations and emission rates in new manufactured and site-built houses, Indoor Air, 10, 178-192. https://doi.org/10.1034/j.1600-0668.2000.010003178.x
  8. Jarnstrom, H., Saarela, K., Kalliokoski, P., Pasanen, A. -L., 2006, Reference values for indoor air pollution concentrations in new residential buildings in Finland, Atmos. Environ., 40, 7178-7191. https://doi.org/10.1016/j.atmosenv.2006.06.021
  9. Jia, C., Batterman, S., Godwin, C., 2008, VOCs in industrial, urban and suburban neighborhoods-Part 2: Factors affecting indoor and outdoor concentrations, Atmos. Environ., 42, 2101-2116. https://doi.org/10.1016/j.atmosenv.2007.11.047
  10. Jia, C., Batterman, S., Godwin, C., Charles, S., Chin, J. Y., 2010, Sources and migration of volatile organic compounds in mixed-use buildings, Indoor Air, 20, 357-369. https://doi.org/10.1111/j.1600-0668.2010.00643.x
  11. Kwon, K. D., Jo, W. K., Lim, H. J., Jeong, W. S., 2008, Volatile Pollutants Emitted From Selected Liquid Household Products, Environ. Sci. Poll. Res., 15, 521-526. https://doi.org/10.1007/s11356-008-0028-x
  12. Leuchner, M., Rappengluck, B., 2010, VOC sourcereceptor relationships in Houston during TexAQS-II, Atmos. Environ., 44, 4056-4067. https://doi.org/10.1016/j.atmosenv.2009.02.029
  13. Lim, S., Lee, K., seo, S., Jang, S., 2011, Impact of regulation on indoor volatile organic compounds in new unoccupied apartment in Korea, Atmos. Environ, 45, 1994-2000. https://doi.org/10.1016/j.atmosenv.2011.01.020
  14. Loh, M. M., Houseman, E. A., Gray, G. M., Levy, J. I., Spengler, J. D., Bennett, D. H., 2006, Measured concentrations of VOCs in several non-residential microenvoronments in the United States, Enviro. Sci. Technol., 40, 6903-6911. https://doi.org/10.1021/es060197g
  15. Na, K., Kim, Y. P., 2007, Chemical mass balance receptor model applied to ambient $C_2$-$C_9$ VOC concentration in Seoul, Korea : effect of chemical reaction losses, Atmos. Environ., 41, 6715-6728. https://doi.org/10.1016/j.atmosenv.2007.04.054
  16. Nielsen, G. D., Larsen, S. T., Olsen, O., Lovik, M., Poulsen, L. K., Glue, C., Wolkoff, P., 2007, Do indoor chemicals promote development of airway allergy?, Indoor Air, 17, 236-255. https://doi.org/10.1111/j.1600-0668.2006.00468.x
  17. OEHHA (Office of Environmental Health Hazard Assessment), 2005, Proposition 65 Status Report Safe Harbor Levels: No Significant Risk Levels for Carcinogens and Maximum Allowable Dose Levels for Chemicals Causing Reproductive Toxicity, California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, California EPA, August 2005.
  18. Ohura, T., Amagai, T., Senga, Y., Fusaya, M., 2006, Organic air pollutants inside and outside residences in Shimizu, Japan: levels, sources and risks, Sci. Total Environ., 366, 485-499. https://doi.org/10.1016/j.scitotenv.2005.10.005
  19. Ohura, T., Amagai, T., Shen, X., Li, S., Zhang, P., Zhu, L., 2009, Comparative study on indoor air quality in Japan and China: characteristics of residential indoor and outdoor VOCs, Atmos. Environ., 43, 6352-6359. https://doi.org/10.1016/j.atmosenv.2009.09.022
  20. Park, J. S., Ikeda, K., 2006, Variations of formaldehyde and VOC levels during 3 years in new and older homes, Indoor Air, 16, 129-135. https://doi.org/10.1111/j.1600-0668.2005.00408.x
  21. Parra, M. A., Elustondo, D., Bermejo, R., Santamaria, J. M., 2008, Exposure to volatile organic compounds (VOC) in public buses of Pamplona, Northern Spain, Sci. Total Environ., 404, 18-25. https://doi.org/10.1016/j.scitotenv.2008.05.028
  22. Peng, C. -Y., Lan, C. -H., Wu, T. -J., 2009, Investigation of indoor chemical pollutants and perceived odor in an area with complaints of unpleasant odors, Build. Environ., 44, 2106-2113. https://doi.org/10.1016/j.buildenv.2009.03.001
  23. Roukos, J., Riffault, V., Locoge, N., Plaisance, H., 2009, VOC in an urban and industrial harbor on the French North Sea coast during two contrasted meteorological situations, Environ. Poll., 157, 3001-3009. https://doi.org/10.1016/j.envpol.2009.05.059
  24. Sarigiannis, D. A., Karakitsios, S. P., Gotti, A., Liakos, I. L., Katsoyiannis, D., 2011, Exposure to major volatile organic compounds and carbonyls in European environments and associated health risk, Environ. Int., 37, 743-765. https://doi.org/10.1016/j.envint.2011.01.005
  25. Schlink, U., Rehwagen, M., Damm, M., Richter, M., Borte, M., Herbarth, O., 2004, Seasonal cycle of indoor-VOCs: comparsion of apartments and cities, Atmos. Environ., 38, 1181-1190. https://doi.org/10.1016/j.atmosenv.2003.11.003
  26. Schlink, U., Thiem, A., Kohajda, T., Richter, M., Strebel, K., 2010, Quantile regression of indoor air concentrations of volatile organic compounds (VOC), Sci. Total Environ., 408, 3840-3851. https://doi.org/10.1016/j.scitotenv.2009.12.002
  27. Su, F. -C., Mukherjee, B., Batterman, S., 2011, Trends of VOC exposures among a nationally representative sample: analysis of the NHANES 1988 through 2004 data sets, Atmos. Environ., 45, 4858-4867. https://doi.org/10.1016/j.atmosenv.2011.06.016
  28. Takigawa, T., Wang, B. L., Sakano, N., Wang, D. H., Ogino, K., Kishi, R., 2009, A longitudinal study of environmental risk factors for subjective symptoms associated with sick building syndrome in new dwellings, Sci. Total Environ., 407, 5223-5228. https://doi.org/10.1016/j.scitotenv.2009.06.023
  29. Tuomainen, M., Tuomainen, A., Liesvuori, J., Pasanen, A. -P., 2001, The 3-year follow-up study in a block of flats - experiences in the use of the Finnish indoor climate classification, Indoor Air, 13, 136-147. https://doi.org/10.1034/j.1600-0668.2003.00171.x
  30. Weisel, C. P., Nicholas, N. J., Lioy, P. J., 1992, Exposure to emissions from gasoline within automobile cabins, J. Expos. Anal. Environ. Epidemiol., 2, 79-96.