DOI QR코드

DOI QR Code

CHARACTERIZATIONS OF LIE HIGHER AND LIE TRIPLE DERIVATIONS ON TRIANGULAR ALGEBRAS

  • Li, Jiankui (Department of Mathematics East China University of Science and Technology) ;
  • Shen, Qihua (Department of Mathematics East China University of Science and Technology)
  • Received : 2011.04.08
  • Published : 2012.03.01

Abstract

In this paper, we show that under certain conditions every Lie higher derivation and Lie triple derivation on a triangular algebra are proper, respectively. The main results are then applied to (block) upper triangular matrix algebras and nest algebras.

References

  1. D. Benkovic, Biderivations of triangular algebras, Linear Algebra Appl. 431 (2009), no. 9, 1587-1602. https://doi.org/10.1016/j.laa.2009.05.029
  2. D. Benkovic and D. Eremita, Commuting traces and commutativity preserving maps on triangular algebras, J. Algebra 280 (2004), no. 2, 797-824. https://doi.org/10.1016/j.jalgebra.2004.06.019
  3. M. Bresar, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), no. 2, 525-546. https://doi.org/10.2307/2154392
  4. W. S. Cheung, Commuting maps of triangular algebras, J. London Math. Soc. 63 (2001), no. 1, 117-127. https://doi.org/10.1112/S0024610700001642
  5. W. S. Cheung, Mappings on triangular algebras, Ph. D Dissertation, University of Victoria, 2000.
  6. W. S. Cheung, Lie derivations of triangular algebras, Linear Multilinear Algebra 51 (2003), no. 3, 299-310. https://doi.org/10.1080/0308108031000096993
  7. F. Y. Lu, Lie triple derivations on nest algebras, Math. Nachr. 280 (2007), no. 8, 882-887. https://doi.org/10.1002/mana.200410520
  8. L. W. Marcoux and A. R. Sourour, Lie isomorphisms of nest algebras, J. Funct. Anal. 164 (1999), no. 1, 163-180. https://doi.org/10.1006/jfan.1999.3388
  9. C. R. Miers, Lie triple derivations of von Neumann algebras, Proc. Amer. Math. Soc. 71 (1978), no. 1, 57-61. https://doi.org/10.1090/S0002-9939-1978-0487480-9
  10. A. Nakajima, On generalized higher derivations, Turkish J. Math. 24 (2000), no. 3, 295-311.
  11. X. F. Qi and J. C. Hou, Lie higher derivations on Nest Algebras, Commun. Math. Res. 26 (2010), no. 2, 131-143.
  12. H. T. Wang and Q. G. Li, Lie triple derivation of the Lie algebra of strictly upper triangular matrix over a commutative ring, Linear Algebra Appl. 430 (2009), no. 1, 66-77. https://doi.org/10.1016/j.laa.2008.06.032
  13. T. L. Wong, Jordan isomorphisms of triangular rings, Proc. Amer. Math. Soc. 133 (2005), no. 11, 3381-3388. https://doi.org/10.1090/S0002-9939-05-07989-X
  14. Z. K. Xiao and F. Wei, Jordan higher derivations on triangular algebras, Linear Algebra Appl. 432 (2010), no. 10, 2615-2622. https://doi.org/10.1016/j.laa.2009.12.006
  15. J. H. Zhang, B. W. Wu, and H. X. Cao, Lie triple derivations of nest algebras, Linear Algebra Appl. 416 (2006), no. 2-3, 559-567. https://doi.org/10.1016/j.laa.2005.12.003
  16. J. H. Zhang and W. Y. Yu, Jordan derivations of triangular algebras, Linear Algebra Appl. 419 (2006), no. 1, 251-255. https://doi.org/10.1016/j.laa.2006.04.015

Cited by

  1. Nonlinear generalized Lie n-derivations on triangular algebras 2017, https://doi.org/10.1080/00927872.2017.1383999
  2. Lie Triple Derivations on𝒥-Subspace Lattice Algebras vol.2014, 2014, https://doi.org/10.1155/2014/969265
  3. On Lie higher derivable mappings on prime rings vol.57, pp.1, 2016, https://doi.org/10.1007/s13366-015-0246-6
  4. Nonlinear generalized Lie triple derivation on triangular algebras vol.45, pp.10, 2017, https://doi.org/10.1080/00927872.2016.1264586
  5. Lie triple derivations on primitive rings vol.08, pp.02, 2015, https://doi.org/10.1142/S1793557115500199
  6. Lie Triple Derivations on von Neumann Algebras vol.39, pp.5, 2018, https://doi.org/10.1007/s11401-018-0098-0
  7. Lie triple derivations of incidence algebras pp.1532-4125, 2019, https://doi.org/10.1080/00927872.2018.1523422