DOI QR코드

DOI QR Code

CHARACTERIZATIONS OF LIE HIGHER AND LIE TRIPLE DERIVATIONS ON TRIANGULAR ALGEBRAS

  • Li, Jiankui ;
  • Shen, Qihua
  • Received : 2011.04.08
  • Published : 2012.03.01

Abstract

In this paper, we show that under certain conditions every Lie higher derivation and Lie triple derivation on a triangular algebra are proper, respectively. The main results are then applied to (block) upper triangular matrix algebras and nest algebras.

Keywords

Lie derivation;Lie higher derivation;Lie triple derivation;triangular algebra

References

  1. D. Benkovic, Biderivations of triangular algebras, Linear Algebra Appl. 431 (2009), no. 9, 1587-1602. https://doi.org/10.1016/j.laa.2009.05.029
  2. D. Benkovic and D. Eremita, Commuting traces and commutativity preserving maps on triangular algebras, J. Algebra 280 (2004), no. 2, 797-824. https://doi.org/10.1016/j.jalgebra.2004.06.019
  3. M. Bresar, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), no. 2, 525-546. https://doi.org/10.2307/2154392
  4. W. S. Cheung, Commuting maps of triangular algebras, J. London Math. Soc. 63 (2001), no. 1, 117-127. https://doi.org/10.1112/S0024610700001642
  5. W. S. Cheung, Mappings on triangular algebras, Ph. D Dissertation, University of Victoria, 2000.
  6. W. S. Cheung, Lie derivations of triangular algebras, Linear Multilinear Algebra 51 (2003), no. 3, 299-310. https://doi.org/10.1080/0308108031000096993
  7. F. Y. Lu, Lie triple derivations on nest algebras, Math. Nachr. 280 (2007), no. 8, 882-887. https://doi.org/10.1002/mana.200410520
  8. L. W. Marcoux and A. R. Sourour, Lie isomorphisms of nest algebras, J. Funct. Anal. 164 (1999), no. 1, 163-180. https://doi.org/10.1006/jfan.1999.3388
  9. C. R. Miers, Lie triple derivations of von Neumann algebras, Proc. Amer. Math. Soc. 71 (1978), no. 1, 57-61. https://doi.org/10.1090/S0002-9939-1978-0487480-9
  10. A. Nakajima, On generalized higher derivations, Turkish J. Math. 24 (2000), no. 3, 295-311.
  11. X. F. Qi and J. C. Hou, Lie higher derivations on Nest Algebras, Commun. Math. Res. 26 (2010), no. 2, 131-143.
  12. H. T. Wang and Q. G. Li, Lie triple derivation of the Lie algebra of strictly upper triangular matrix over a commutative ring, Linear Algebra Appl. 430 (2009), no. 1, 66-77. https://doi.org/10.1016/j.laa.2008.06.032
  13. T. L. Wong, Jordan isomorphisms of triangular rings, Proc. Amer. Math. Soc. 133 (2005), no. 11, 3381-3388. https://doi.org/10.1090/S0002-9939-05-07989-X
  14. Z. K. Xiao and F. Wei, Jordan higher derivations on triangular algebras, Linear Algebra Appl. 432 (2010), no. 10, 2615-2622. https://doi.org/10.1016/j.laa.2009.12.006
  15. J. H. Zhang, B. W. Wu, and H. X. Cao, Lie triple derivations of nest algebras, Linear Algebra Appl. 416 (2006), no. 2-3, 559-567. https://doi.org/10.1016/j.laa.2005.12.003
  16. J. H. Zhang and W. Y. Yu, Jordan derivations of triangular algebras, Linear Algebra Appl. 419 (2006), no. 1, 251-255. https://doi.org/10.1016/j.laa.2006.04.015

Cited by

  1. Nonlinear generalized Lie n-derivations on triangular algebras 2017, https://doi.org/10.1080/00927872.2017.1383999
  2. Lie Triple Derivations on𝒥-Subspace Lattice Algebras vol.2014, 2014, https://doi.org/10.1155/2014/969265
  3. On Lie higher derivable mappings on prime rings vol.57, pp.1, 2016, https://doi.org/10.1007/s13366-015-0246-6
  4. Nonlinear generalized Lie triple derivation on triangular algebras vol.45, pp.10, 2017, https://doi.org/10.1080/00927872.2016.1264586
  5. Lie triple derivations on primitive rings vol.08, pp.02, 2015, https://doi.org/10.1142/S1793557115500199
  6. Lie Triple Derivations on von Neumann Algebras vol.39, pp.5, 2018, https://doi.org/10.1007/s11401-018-0098-0
  7. Lie triple derivations of incidence algebras pp.1532-4125, 2019, https://doi.org/10.1080/00927872.2018.1523422