DOI QR코드

DOI QR Code

A BORSUK-ULAM TYPE THEOREM OVER ITERATED SUSPENSIONS OF REAL PROJECTIVE SPACES

  • Tanaka, Ryuichi (Department of Mathematics Faculty of Science and Technology Tokyo University of Science)
  • Received : 2010.10.03
  • Published : 2012.03.01

Abstract

A CW complex B is said to be I-trivial if there does not exist a $\mathbb{Z}_2$-map from $S^{i-1}$ to S(${\alpha}$) for any vector bundle ${\alpha}$ over B a any integer i with i > dim ${\alpha}$. In this paper, we consider the question of determining whether $\Sigma^k\mathbb{R}P^n$ is I-trivial or not, and to this question we give complete answers when k $\neq$ 1, 3, 8 and partial answers when k = 1, 3, 8. A CW complex B is I-trivial if it is "W-trivial", that is, if for every vector bundle over B, all the Stiefel-Whitney classes vanish. We find, as a result, that $\Sigma^k\mathbb{R}P^n$ is a counterexample to the converse of th statement when k = 2, 4 or 8 and n $\geq$ 2k.

Keywords

sphere bundle;$\mathbb{Z}_2$-map;index

References

  1. P. E. Conner and E. E. Floyd, Fixed point free involutions and equivariant maps, Bull. Amer. Math. Soc. 66 (1960), 416-441. https://doi.org/10.1090/S0002-9904-1960-10492-2
  2. P. E. Conner and E. E. Floyd, Fixed point free involutions and equivariant maps II, Trans. Amer. Math. Soc. 105 (1962), 222-228. https://doi.org/10.1090/S0002-9947-1962-0143208-6
  3. M. Fujii, KO-groups of projective spaces, Osaka J. Math. 4 (1967), 141-149.
  4. F. Hirzebruch, Neue Topologische Methoden in der Algebraischen Geometrie, Ergebnisse der Math., Springer, 1956.
  5. J. Milnor, Some consequences of a theorem of Bott, Ann. of Math. (2) 68 (1958), 444-449. https://doi.org/10.2307/1970255
  6. R. Tanaka, On the index and co-index of sphere bundles, Kyushu J. Math. 57 (2003), no. 2, 371-382. https://doi.org/10.2206/kyushujm.57.371
  7. R. Tanaka, A stability theorem for the index of sphere bundles, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), no. 1, 177-182.
  8. R. Tanaka, A berwise analogue of the Borsuk-Ulam theorem for sphere bundles over a 2-cell complex, Topology Appl. 154 (2007), no. 8, 1827-1833. https://doi.org/10.1016/j.topol.2007.01.016
  9. R. Tanaka, A Borsuk-Ulam type theorem for sphere bundles over stunted projective spaces, Topology Appl. 156 (2009), no. 5, 932-938. https://doi.org/10.1016/j.topol.2008.11.011
  10. R. Tanaka, On trivialities of Stiefel-Whitney classes of vector bundles over iterated suspension spaces, Homology, Homotopy Appl. 12 (2010), no. 1, 357-366. https://doi.org/10.4310/HHA.2010.v12.n1.a18
  11. W.-T. Wu, Les i-carres dans une variete grassmannienne, C. R. Acad. Sci. Paris 230 (1950), 918-920.