DOI QR코드

DOI QR Code

Marine Prokaryotic Diversity of the Deep Sea Waters at the Depth of 1500 m Off the Coast of the Ulleung Island in the East Sea (Korea)

울릉도 연안 수심 1500 m에 서식하는 해양미생물군집의 분포

  • Kim, Mi-Kyung (Marine Science Research Center, Institute of Biotechnology, Yeungnam University) ;
  • Khang, Yongho (School of Biotechnology, Yeungnam University)
  • 김미경 (영남대학교 생명공학연구소 해양연구센터) ;
  • 강용호 (영남대학교 생명공학부)
  • Received : 2012.11.21
  • Accepted : 2012.12.26
  • Published : 2012.12.31

Abstract

Microbial diversity in the 1500 m depth sea waters off the coast of Ulleung island of the East Sea, Korea, was investigated. Genomic DNAs were extracted directly from the marine microbes filtered through ultramembrane filters. Pyrosequencing of 16S rDNAs of these microbes resulted in 13,029 reads, of which uncultured bacteria consisted of 54.1%, alphaproteobacteria 23.4%, and gammaproteobacteria 22.3%. Other classes such as flavobacteria, actinobacteria, and epsilonproteobacteria were distributed within 0.2% of total reads. Among the cultivable bacteria, it was found that Rhodobacteraceae family of alphaproteobacteria, Alteromonadaceae, Halomonadaceae, and Piscirickettsiaceae families of gammaproteobacteria were mostly distributed in the deep-sea waters.

Keywords

deep seawater;East Sea;marine microbe;pyrosequencing;Ulleng Island

Acknowledgement

Supported by : 국토해양부

References

  1. Anderson, R.E., Brazelton, W.J., and Baross, J.A. 2011. Is the genetic landscape of the deep subsurface biosphere affected by viruses? Front Microbiol. 2, 219-234.
  2. Bolhius, H. and Stal, L.J. 2011. Analysis of bacterial and archaeal diversity in coastal microbial mats using massive parallel 16S rRNA gene tag sequencing. ISME J. 5, 1701-1712. https://doi.org/10.1038/ismej.2011.52
  3. Ceylan, S., Yilan, G., Akbulut, B.S., Poli, A., and Kazan, D. 2012. Interplay of adaptive capabilities of Halomonas sp. AAD12 under salt stress. J. Biosci. Bioeng. 114, 45-52. https://doi.org/10.1016/j.jbiosc.2012.02.030
  4. Dang, H., Li, T., Chen, M., and Huang, G. 2008. Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Appl. Environ. Microbiol. 74, 52-60. https://doi.org/10.1128/AEM.01400-07
  5. Duperthuy, M., Schmitt, P., Garzon, E., Caro, A., Rosa, R.D., Le Roux, F., Lautredou-Audouy, N., Got, P., Romestand, B., de Lorgeril, J., and et al. 2011. Use of OmpUporins for attachment and invasion of Crassostreagigas immune cells by the oyster pathogen Vibrio splendidus. Proc. Natl. Acad. Sci. USA 108, 2993-2998. https://doi.org/10.1073/pnas.1015326108
  6. Edgcomb, V.P., Leadbetter, E.R., Bourland, W., Beaudoin, D., and Bernhard, J.M. 2011. Structured multiple endosymbiosis of bacteria and archaea in a ciliate frommarine sulfidic sediments: a survival mechanism in low oxygen, sulfidicsediments? Front. Microbiol. 2, 55-70.
  7. Galand, P.E., Casamayor, E.O., Kirchman, D.L., and Lovejoy, C. 2009. Ecology of the rare microbial biosphere of the Arctic Ocean. Proc. Natl. Acad. Sci. USA 106, 22427-22432. https://doi.org/10.1073/pnas.0908284106
  8. Heidelberg, K.B., Gilbert, J.A., and Joint, I. 2010. Marine genomics: at the interface of marine microbial ecology and biodiversity. Microb. Biotechnol. 3, 531-543. https://doi.org/10.1111/j.1751-7915.2010.00193.x
  9. Hong, P.Y., Wheeler, E., Cann, I.K., and Mackie, R.I. 2011. Phylogenetic analysis of the fecal microbial community in herbivorous land and marine iguanas of the Galapagos Islands using 16S rRNA-based pyrosequencing. ISME J. 5, 1461-1470. https://doi.org/10.1038/ismej.2011.33
  10. Imhoff, J.F., Labes, A., and Wiese, J. 2011. Bio-mining the microbial treasures of the ocean: new natural products. Biotechnol. Adv. 29, 468-482. https://doi.org/10.1016/j.biotechadv.2011.03.001
  11. Joo, D.-S. 2011. Changes in quality of salted and dried brown-croaker product prepared with deep seawater salt. J. Kor. Soc. Food Sci. Nutr. 40, 235-244. https://doi.org/10.3746/jkfn.2011.40.2.235
  12. Kaye, J.Z., Sylvan, J.B., Edwards, K.J., and Baross, J.A. 2011. Halomonas and Marinobacter ecotypes from hydrothermal vent, subseafloor and deep-sea environments. FEMS Microbiol. Ecol. 75, 123-133. https://doi.org/10.1111/j.1574-6941.2010.00984.x
  13. Kim, J.-H., Kim, G.T., Park, S.-H., Oh, W.-Y., and Kim, H.-J. 2012a. A feasibility study on thermal energy resource in deep ocean water. J. Kor. Soc. Marine Environ. Eng. 15, 9-18. https://doi.org/10.7846/JKOSMEE.2012.15.1.009
  14. Kim, S.J., Shin, S.C., Hong, S.G., Lee, Y.M., Choi, I.G., and Park, H. 2012b. Genome sequence of a novel member of the genus Psychrobacter isolated from antarctic soil. J. Bacteriol. 194, 2403. https://doi.org/10.1128/JB.00234-12
  15. Kumari, R., Tecon, R., Beggah, S., Rutler, R., Arey, J.S., and van der Meer, J.R. 2011. Development of bioreporter assays for the detection of bioavailability of long-chain alkanes based on the marine bacterium Alcanivorax borkumensis strain SK2. Environ. Microbiol. 13, 2808-2819. https://doi.org/10.1111/j.1462-2920.2011.02552.x
  16. McGenity, T.J., Folwell, B.D., McKew, B.A., and Sanni, G.O. 2012. Marine crude-oil biodegradation: a central role for interspecies interactions. Aquat. Biosyst. 8, 10-18. https://doi.org/10.1186/2046-9063-8-10
  17. Pontarp, M., Canback, B., Tunlid, A., and Lundberg, P. 2012. Phylogenetic analysis suggests that habitat filtering is structuring marinebacterial communities across the globe. Microb. Ecol. 64, 8-17. https://doi.org/10.1007/s00248-011-0005-7
  18. Ritchie, A.E. and Johnson, Z.I. 2012. Abundance and genetic diversity of aerobic anoxygenic phototrophic bacteria of coastal regions of the pacific ocean. Appl. Environ. Microbiol. 78, 2858-2866. https://doi.org/10.1128/AEM.06268-11
  19. Slightom, R.N. and Buchan, A. 2009. Surface colonization by Marine Roseobacters: Integrating genotype and phenotype. Appl. Environ. Microbiol. 75, 6027-6037. https://doi.org/10.1128/AEM.01508-09
  20. Sylvan, J.B., Toner, B.M., and Edwards, K.J. 2012. Life and death of deep-sea vents: bacterial diversity and ecosystem succession on inactive hydrothermal sulfides. MBio. 3, e00279-11.
  21. Teramoto, M., Suzuki, M., Hatmanti, A., and Harayama, S. 2010. The potential of Cycloclasticus and Altererythrobacter strains for use in bioremediation of petroleum-aromatic-contaminated tropical marine environments. J. Biosci. Bioeng. 110, 48-52. https://doi.org/10.1016/j.jbiosc.2009.12.008
  22. VerEecke, H.C., Butterfield, D.A., Huber, J.A., Lilley, M.D., Olson, E.J., Roe, K.K., Evans, L.J., Merkel, A.Y., Cantin, H.V., and Holden, J.F. 2012. Hydrogen-limited growth of hyperthermophilic methanogens at deep-sea hydrothermal vents. Proc. Natl. Acad. Sci. USA 109, 13674-13679. https://doi.org/10.1073/pnas.1206632109
  23. Wang, H., Li, H., Shao, Z., Liao, S., Johnstone, L., Rensing, C., and Wanga, G. 2012. Genome sequence of deep-sea manganese-oxidizing bacterium Marinobacter manganoxydans MnI7-9. J. Bacteriol. 194, 899-900. https://doi.org/10.1128/JB.06551-11
  24. Weber, M., Teeling, H., Huang, S., Waldmann, J., Kassabgy, M., Fuchs, B.M., Klindworth, A., Klockow, C., Wichels, A., Gerdts, G., Amann, R., and Glockner, F.O. 2010. Practical application of self-organizing maps to interrelate biodiversity and functional data in NGS-based metagenomics. ISME J. 5, 918-928.
  25. Yoshida-Takashima, Y., Nunoura, T., Kazama, H., Noguchi, T., Inoue, K., Akashi, H., Yamanaka, T., Toki, T., Yamamoto, M., Furushima, Y., Ueno, Y., Yamamoto, H., and Takai, K. 2012. Spatial distribution of viruses associated with planktonic and attached microbial communities in hydrothermal environments. Appl. Environ. Microbiol. 78, 1311-1320. https://doi.org/10.1128/AEM.06491-11

Cited by

  1. Comparison of Bacterial Diversity in the Water Columns of Goseong Deep Seawaters vol.49, pp.3, 2013, https://doi.org/10.7845/kjm.2013.3040