Molecular Divergences of 16S rRNA and rpoB Gene in Marine Isolates of the Order Oscillatoriales (Cyanobacteria)

남조세균 흔들말목(Cyanobacteria, Oscillatoriales) 해양 균주의 16S rRNA와 rpoB 유전자 변이

  • Cheon, Ju-Yong (Department of Green Life Science, Sangmyung University) ;
  • Lee, Min-Ah (Department of Green Life Science, Sangmyung University) ;
  • Ki, Jang-Seu (Department of Green Life Science, Sangmyung University)
  • 천주용 (상명대학교 그린생명과학과) ;
  • 이민아 (상명대학교 그린생명과학과) ;
  • 기장서 (상명대학교 그린생명과학과)
  • Received : 2012.11.28
  • Accepted : 2012.12.14
  • Published : 2012.12.31


In this study, we investigated molecular divergences and phylogenetic characteristics of the 16S ribosomal RNA (rRNA) and RNA polymerase beta subunit (rpoB) gene sequences from the order Oscillatoriales (Cyanobacteria). The rpoB of Oscillatoriales showed higher genetic divergence when compared with those of 16S rRNA (p-distance: rpoB=0.270, 16S=0.109), and these differences were statistically significant (Student t-test, p<0.001). Phylogenetic trees of 16S rRNA and rpoB were generally compatible; however, rpoB tree clearly separated the compared Oscillatoriales taxa, with higher phylogenetic resolution. In addition, parsimony analyses showed that rpoB gene evolved 2.40-fold faster than 16S rRNA. These results suggest that the rpoB is a useful gene for the molecular phylogenetics and species discrimination in the order Oscillatoriales.


Oscillatoriales;rpoB gene;Cyanobacteria;DNA similarity;genetic distance


Supported by : 상명대학교


  1. Anagnostidis, K. and Komarek, J. 1988. Modern approach to the classification system of cyanophytes. 3. Oscillatoriales. Arch. Hydrobiol. 80, 327-472.
  2. Broady, P.A. and Kibblewhite, A.L. 1991. Morphological characterization of Oscillatoriales (Cyanobacteria) from Ross Island and southern Victoria Land, Antarctica. Antarct. 3, 35-45.
  3. Casamatta, D.A., Johansen, J.R., Vis, M.L., and Broadwater, S.T. 2005. Molecular and morphological characterization of ten polar and near-polar strains within the Oscillatoriales (Cyanobacteria). J. Phycol. 41, 421-438.
  4. Case, R.J., Boucher, Y., Dahllof, I., Holmstrom, C., Doolittle, W.F., and Kjelleberg, S. 2007. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl. Environ. Microbiol. 73, 278-288.
  5. Cheon, J.Y., Lee, M.A., and Ki, J.S. 2011. Analysis of RNA polymerase beta subunit (rpoB) gene sequences for the species discrimination of harmful cyanobacteria Anabaena. Kor. J. Microbiol. 47, 268-274.
  6. Gaget, V., Gribaldo, S., and Tandeau de Marsac, N. 2011. An rpoB signature sequence provides unique resolution for the molecular typing of cyanobacteria. Int. J. Syst. Evol. Microbiol. 61, 170-183.
  7. Giovannoni, S.J., Turner, S., Olsen, G.J., Barns, S., Lane, D.J., and Pace, N.R. 1988. Evolutionary relationships among cyanobacteria and green chloroplasts. J. Bacteriol. 170, 3584-3592.
  8. Gupta, R.S. 1997. Protein phylogenies and signature sequences: evolutionary relationships within prokaryotes and between prokaryotes and eukaryotes. Antonie. van Leeuwenhoek. 72, 49-61.
  9. Gupta, R.S. 1998. Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol. Mol. Biol. Rev. 62, 1435- 1491.
  10. Honda, D., Yokota, A., and Sugiyama, J. 1999. Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J. Mol. Evol. 48, 723-739.
  11. Hong, S.K., Kim, B.J., Yun, Y.J., Lee, K.H., Kim, E.C., Park, E.M., Park, Y.G., Bai, G.H., and Kook, Y.H. 2004. Identification of Mycobacterium tuberculosis by PCR-linked reverse hybridization using specific rpoB oligonucleotide probes. J. Microbiol. Methods 59, 71-79.
  12. Huelsenbeck, J.P. and Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754-755.
  13. Ishida, T., Watanabe, M.M., Sugiyama, J., and Yokota, A. 2001. Evidence for polyphyletic origin of the members of the orders of Oscillatoriales and Pleurocapsales as determined by 16S rDNA analysis. FEMS Microbiol. 201, 79-82.
  14. Jensen, T.E. 1985. Cell inclusion in the cyanobacteria. Algol. 39, 33-73.
  15. Kaebernick, M. and Neilan, B.A. 2001. Ecological and molecular investigations of cyanotoxin production. FEMS Microbiol. Ecol. 35, 1-9.
  16. Ki, J.S. 2010. Divergence analysis of 16S rRNA and rpoB gene sequences revealed from the harmful cyanobacterium Microcystis aeruginosa. Kor. J. Microbiol. 46, 296-302.
  17. Ki, J.S., Zhang, R., Zhang, W., Huang, Y.L., and Qian, P.Y. 2009. Analysis of RNA polymerase beta subunit (rpoB) gene sequences for the discriminative power of marine Vibrio species. Microb. Ecol. 58, 679 -691.
  18. Marquardt, J. and Palinska, K.A. 2007. Genotypic and phenotypic diversity of cyanobacteria assigned to the genus Phormidium (Oscillatoriales) from diVerent habitats and geographical sites. Arch. Microbiol. 187, 397-413.
  19. Nubel, U., Garcia-Pichel, F., and Muyzer, G. 1997. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63, 3327-3332.
  20. Salerno, A., Deletoile, A., Lefevre, M., Ciznar, I., Krovacek, K., Grimont, P., and Brisse, S. 2007. Recombining population structure of Plesiomonas shigelloides (Enterobacteriaceae) revealed by multilocus sequence typing. J. Bacteriol. 189, 7808-7818.
  21. Smith, P.T. 1996. Toxic effects of blooms of marine species of Oscillatoriales on farmed prawns (Penaeus monodon and P. japonicus) and brine shrimp (Artemia salina). Toxicon. 34, 857-869.
  22. Stanier, G. 1988. Fine structure of cyanobacteria. Meth. Enzymol. 167, 157-173.
  23. Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol. 24, 1596-1599.
  24. Thompson, J.D., Higgins, D.G., and Gibbson, T.J. 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4690.
  25. Turner, S., Pryer, K.M., Miao, V.P.W., and Palmer, J.D. 1999. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J. Eukaryot. Microbiol. 46, 327-338.
  26. Volokhov, D.V., Neverov, A.A., George, J., Kong, H., Liu, S.X., Anderson, C., Davidson, M.K., and Chizhikov, V. 2007. Genetic analysis of housekeeping genes of members of the genus Acholeplasma: Phylogeny and complementary molecular markers to the 16S rRNA gene. Mol. Phylogenet. Evol. 44, 699-710.
  27. Wilmotte, A. and Herdman, M. 2001. Phylogenetic relationships among the cyanobacteria based on 16S rRNA sequences. Bergey's Manual of Systematic Bacteriology, 2nd ed., pp. 487-493. Springer-Verlag, New York, USA.

Cited by

  1. A polyphasic approach leading to the revision of the genus Planktothrix (Cyanobacteria) and its type species, P. agardhii, and proposal for integrating the emended valid botanical taxa, as well as three new species, Planktothrix paucivesiculata sp. nov.ICNP, Planktothrix tepida sp. nov.ICNP, and Planktothrix serta sp. nov.ICNP, as genus and species names with nomenclatural standing under the ICNP vol.38, pp.3, 2015,