DOI QR코드

DOI QR Code

Characteristics and Virulence Assay of Entomopathogenic Fungus Nomuraea rileyi for the Microbial Control of Spodoptera exigua (Lepidoptera: Noctuidae)

파밤나방의 미생물적 방제를 위한 병원성 곰팡이 Nomuraea rileyi의 특성 및 병원성 검정

  • Lee, Won Woo (Department of Agricultural Biology, College of Agriculture, Life & Environment Sciences, Chungbuk National University) ;
  • Shin, Tae Young (Department of Agricultural Biology, College of Agriculture, Life & Environment Sciences, Chungbuk National University) ;
  • Ko, Seung Hyun (Department of Agricultural Biology, College of Agriculture, Life & Environment Sciences, Chungbuk National University) ;
  • Choi, Jae Bang (Department of Agricultural Biology, College of Agriculture, Life & Environment Sciences, Chungbuk National University) ;
  • Bae, Sung Min (Department of Agricultural Biology, College of Agriculture, Life & Environment Sciences, Chungbuk National University) ;
  • Woo, Soo Dong (Department of Agricultural Biology, College of Agriculture, Life & Environment Sciences, Chungbuk National University)
  • 이원우 (충북대학교 농업생명환경대학 농생물학과) ;
  • 신태영 (충북대학교 농업생명환경대학 농생물학과) ;
  • 고승현 (충북대학교 농업생명환경대학 농생물학과) ;
  • 최재방 (충북대학교 농업생명환경대학 농생물학과) ;
  • 배성민 (충북대학교 농업생명환경대학 농생물학과) ;
  • 우수동 (충북대학교 농업생명환경대학 농생물학과)
  • Received : 2012.09.21
  • Accepted : 2012.10.22
  • Published : 2012.12.31

Abstract

To date, chemical control remains the most common way to reduce beet armyworm (Spodoptera exigua) populations. However, this insect has become more tolerant or resistant to many chemical insecticides and the insect larvae usually hide inside hollow, tube-like leaves of host plant so they were difficult to kill by spraying insecticides. The use of viral and bacterial insecticide to solve these problems has not been successful because of their novel feeding habit. To overcome these problems, in this study, the biological characteristics and virulence of an entomopathogenic fungus isolated from the cadaver of larvae beet armyworm were investigated. Isolated entomopathogenic fungus was identified as Nomeraea rileyi (Farlow) Samson by morphological examinations and genetic identification using sequences of the ITS, ${\beta}$-tubulin gene and EF1-${\alpha}$ regions. This fungus was named as N. rileyi SDSe. Virulence tests against 3rd larvae of beet armyworm were conducted with various conidial suspensions from $1{\times}10^4$ to $10^8$ conidia/ml of N. rileyi SDSe in laboratory conditions. Mortality rate of beet armyworm showed from 20 to 54% and the virulence increased with increasing conidial concentrations. Although N. rileyi SDSe showed low mortality rate against beet armyworm, it is expected that N. rileyi SDSe will be used effectively in the integrated pest management programs against the beet armyworm.

Keywords

Nomuraea rileyi;Spodoptera exigua;biocontrol;entomopathogenic fungi

Acknowledgement

Supported by : 한국연구재단

References

  1. Bell, J.V. 1975. Production and pathogenicity of fungus, Spicaria rileyi from solid and liquid media. J. Invertebr. Pathol. 26, 129-130. https://doi.org/10.1016/0022-2011(75)90180-9
  2. Bidochka, M.J. and Khachatourians, G.G. 1987. Purification and properties of an extracellular protease produced by the entomopathogenic fungus Beauveria bassiana. Appl. Environ. Microbiol. 53, 1679-1684.
  3. Brito, E.S., Paula, A.R., Vieira, L.P., Dolinski, C., and Samuels, R.I. 2008. Combining vegetable oil and sub-lethal concentrations of Imidacloprid with Beauveria bassiana and Metarhizium anisopliae against adult guava weevil Conotrachelus psidii (Coleoptera: Curculionidae). Biocontrol. Sci. Technol. 18, 665-673. https://doi.org/10.1080/09583150802195965
  4. Charnley, A.K. 1997. Entomopathogenic fungi and their role in pest control, pp. 185-201. In Wicklow, D.T. and Soderstrom, B.E. (eds.), The Mycota IV environmental and microbial relationships, Berlin, Springer.
  5. Choi, S.U., Cheong, S.S., and Hwang, C.Y. 2009. Mycelial growth and pathogenicity of entomopathogenic fungus Nomuraea rileyi. J. Agric. Life Sci. 40, 32-38.
  6. de Faria, M.R. and Wraight, S.P. 2007. Mycoinsecticides and Mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biol. Control. 43, 237-256. https://doi.org/10.1016/j.biocontrol.2007.08.001
  7. Fernandes, E.K., Rangel, D.E., Moraes, A.M., Bittencourt, V.R., and Roberts, D.W. 2008. Cold activity of Beauveria and Metarhizium, and thermotolerance of Beauveria. J. Invertebr. Pathol. 98, 69-78. https://doi.org/10.1016/j.jip.2007.10.011
  8. Hajek, A.E. and St. Leger, R.J. 1994. Interactions between fungal pathogens and insect hosts. Annu. Rev. Entomol. 39, 293-322. https://doi.org/10.1146/annurev.en.39.010194.001453
  9. Han, Q., Inglis, G.D., and Hausner, G. 2002. Phylogenetic relationships among strains of the entomopathogenic fungus, Nomuraea rileyi, as revealed by partial beta-tubulin sequences and inter-simple sequence repeat (ISSR) analysis. Lett. Appl. Microbiol. 34, 376-383. https://doi.org/10.1046/j.1472-765X.2002.01103.x
  10. Hernandez-Martinez, P., Ferre, J., and Escriche, B. 2009. Broad-spectrum cross-resistance in Spodoptera exigua from selection with a marginally toxic Cry protein. Pest. Manag. Sci. 65, 645-650. https://doi.org/10.1002/ps.1725
  11. Holdom, D.G. and Van de Klashorst, G. 1986. Inexpensive culture media and methods for Nomuraea rileyi. J. Invertebr. Pathol. 48, 246-248. https://doi.org/10.1016/0022-2011(86)90131-X
  12. Ignoffo, C.M. 1981. The fungus Nomuraea rileyi a microbial insecticide, pp. 513-538. In Burges, H.D. (ed.), Microbial Control of Pests and Plant Diseases 1970-1980. Academic Press, New York & London.
  13. Jaramillo, J., Borgemeister, C., Ebssa, L., Gaigl, A., Tobon, R., and Zimmermann, G. 2005. Effect of combined applications of Metarhizium anisopliae (Metsch.) Sorokin (Deuteromycotina: Hyphomycetes) strain CIAT 224 and different dosages of imidacloprid on the subterranean burrower bug Cyrtomenus bergi Froeschner (Hemiptera: Cydnidae). Biol. Control. 34, 12-20. https://doi.org/10.1016/j.biocontrol.2005.03.021
  14. Kao, C.W. and Tsai, Y.S. 1989. Control of beet armyworm with entopathogenic fungi. Chinese J. Entomol. 4, 214-225.
  15. Kim, Y. and Kim, N. 1997. Cold hardiness of the beet armyworm, Spodoptera exigua (Noctuidae: Lepidoptera). Environ. Entomol. 26, 1117-1123. https://doi.org/10.1093/ee/26.5.1117
  16. Lacey, L.A., Frutos, R., Kaya, H.K., and Vail, P. 2001. Insect pathogens as biological control agents: Do they have a future? Biol. Control. 21, 230-248. https://doi.org/10.1006/bcon.2001.0938
  17. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., and et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  18. Lin, H.F., Yang, X.J., Gao, Y.B., and Li, S.G. 2007. Pathogenicity of several fungal species on Spodoptera litura. Ying Yong Sheng Tai Xue Bao. 18, 937-940.
  19. Martins, T., Oliveira, L., and Garcia, P. 2005. Larval mortality factors of Spodoptera littoralis in the Azores. Biocontrol. 50, 761-770. https://doi.org/10.1007/s10526-004-7731-4
  20. Moar, W.J., Pusztai-Carey, M., Faassen, M.N., Bosch, D., Frutos, R., Rang, C., Luo, K., and Adang, M.J. 1995. Development of Bacillus thuringiensis CryIC resistance by Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). Appl. Environ. Microbiol. 61, 2086-2092.
  21. Moulton, J.K., Pepper, D.A., Dennehy, J., Dugger, P., and Richter, D. 1999. Studies of resistance of beet armyworm (Spodoptera exigua) to spinosad in field populations from the southern USA and southeast Asia. Proceedings of the Beltwide Cotton Conferences. Orlando. FL. USA 2, 884-887.
  22. Narayanan, K. 2004. Insect defense: its impact on microbial control of insect pests. Curr. Sci. India 86, 800-814.
  23. Park, J.D. and Goh, H.G. 1992. Control of beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), using synthetic sex pheromone. I. Control by mass trapping in Allium fistulosum Field. Kor. J. Appl. Entomol. 31, 45-49.
  24. Park, J.A. and Kim, Y. 2012. Phospholipase A(2) inhibitors in bacterial culture broth enhance pathogenicity of a fungus Nomuraea rileyi. J. Microbiol. 50, 644-651. https://doi.org/10.1007/s12275-012-2108-3
  25. Paula, A.R., Carolino, A.T., Paula, C.O., and Samuels, R.I. 2011. The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide Imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasit & Vectors 4, 8. https://doi.org/10.1186/1756-3305-4-8
  26. Qun, L.C., Huang, B.L., Qiao, M.J., Wei, J.G., and Ding, B. 2011. Entomopathogenic fungi on Hemiberlesia pitysophila. PLoS ONE 6, e23649. https://doi.org/10.1371/journal.pone.0023649
  27. Rashki, M., Kharazi-pakdel, A., Allahyari, H., and van Alphen, J.J.M. 2009. Interactions among the entomopathogenic fungus, Beauveria bassiana (Ascomycota: Hypocreales), the parasitoid, Aphidius matricariae (Hymenoptera: Braconidae), and its host, Myzuspersicae (Homoptera: Aphididae). Biol. Control. 50, 324-328. https://doi.org/10.1016/j.biocontrol.2009.04.016
  28. Rehner, S.A. and Buckley, E. 2005. A Beauveria phylogeny inferred from nuclear ITS and EF1-a sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycol. 97, 84-98. https://doi.org/10.3852/mycologia.97.1.84
  29. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  30. Samson, R.A. 1974. Paecilomyces and some allied hyphomycetes. Stud. Mycol. 6, 80-83.
  31. Sanchez-Pena, S.R. 2000. Entomopathogens from two Chihuahuan desert localities in Mexico. Biocontrol. 45, 63-78. https://doi.org/10.1023/A:1009915308907
  32. Santos, A., Oliveira, B.L., and Samuels, R.I. 2007. Selection of entomopathogenic fungi for use in combination with sub-lethal doses of imidacloprid: perspectives for the control of the leaf-cutting ant Atta sexdens rubropilosa Forel (Hymenoptera: Formicidae). Mycopathol. 163, 233-240. https://doi.org/10.1007/s11046-007-9009-8
  33. Shah, P.A. and Pell, J.K. 2003. Entomopathogenic fungi as biological control agents. Appl. Microbiol. Biotechnol. 61, 413-423. https://doi.org/10.1007/s00253-003-1240-8
  34. Shin, T.Y., Choi, J.B., Bae, S.M., Cha, Y.R., Oh, J.M., Koo, H.N., and Woo, S.D. 2010. Study on selective media for isolation of entomopathogenic fungi. Int. J. Indust. Entomol. 20, 7-12.
  35. Sigler, L. and Gibas, C.F.C. 2005. Utility of a cultural method for identification of the ericoid mycobiont Oidiodendron maius confirmed by ITS sequence analysis. Stud. Mycol. 53, 63-74. https://doi.org/10.3114/sim.53.1.63
  36. Smagghe, G., Pineda, S., Carton, B., Estal, P.D., Budia, F., and Vinuela, E. 2003. Toxicity and kinetics of methoxyfenozide in greenhouse-selected Spodoptera exigua (Lepidoptera: Noctuidae). Pest. Manag. Sci. 59, 1203-1209. https://doi.org/10.1002/ps.756
  37. Srisukchayakul, P., Wiwat, C., and Pantuwatana, S. 2005. Studies on the pathogenesis of the local isolates of Nomuraea rileyi against Spodoptera litura. Sci. Asia. 31, 273-276. https://doi.org/10.2306/scienceasia1513-1874.2005.31.273
  38. St. Leger, R.J. and Wang, C. 2009. Entomopathonic fungi and the genomics Era, pp. 365-400. In Patricia Stock, S.P., Vanderberg, J., Boemare, N., and Glazer, I. (eds.). Insect Pathogens: Molecular Approaches and Techniques, CABI.
  39. Studdert, J.P. and Kaya, H.K. 1990. Water potential, temperature, and claycoating of Beauveria bassiana conidia effect on Spodoptera exigua pupal mortality in 2 soil types. J. Invertebr. Pathol. 56, 327- 336. https://doi.org/10.1016/0022-2011(90)90119-Q
  40. Sun, S., Cheng, Z., Fan, J., Cheong, X., and Pang, Y. 2012. The utility of camptothecin as a synergist of Bacillus thuringiensis var. kurstaki and nucleopolyhedroviruses against Trichoplusia ni and Spodoptera exigua. J. Invertebr. Pathol. 56, 327-336.
  41. Supakdamrongkul, P., Bhumiratana, A., and Wiwat, C. 2010. Characterization of an extracellular lipase from the biocontrol fungus, Nomuraea rileyi MJ and its toxicity toward Spodoptera litura. J. Invertebr. Pathol. 105, 228-235. https://doi.org/10.1016/j.jip.2010.06.011
  42. Tartar, A., Boucias, D.G., Adams, B.J., and Becnel, J.J. 2002. Phylogenetic identifies the invertebrate pathogen Helicosporidium sp. as a green alga (Chlorophyta). Int. J. Syst. Evol. Microbiol. 52, 273-279. https://doi.org/10.1099/00207713-52-1-273
  43. Vimala Devi, P.S., Chowdary, A., and Prasad, Y.G. 2000. Cost-effective multiplication of the entomopathogenic fungus Nomuraea rileyi (F) Samson. Mycopathol. 151, 35-39.
  44. Vimala Devi, P.S. and Prasad, Y.G. 2001. Nomuraea rileyi - a potential mycoinsecticide, pp. 23-38. In Upadhyay, R.K., Mukherji, K.G., and Chamola, B.P. (eds.). Biocontrol potential and its exploitation in sustainable agriculture, Vol. 2, Insect Pests, New York, Kluwer Academic/Plenum Publishers.
  45. Weinzierl, R., Henn, T., and Koehler, P.G. 1998. Microbial insecticides. ENY-275. [Online.] http://edis.ifas.uX.edu/IN081.
  46. Wekesa, V.W., Moraes, G.J., Knapp, M., and Delalibera, I.Jr. 2007. Interactions of two natural enemies of Tetranychus evansi, the fungal pathogen Neozygites floridana (Zygomycetes: Entomophthorales) and the predatorymite Phytoseiulus longipes (Acari: Phytoseiidae). Biol. Control. 41, 408-414. https://doi.org/10.1016/j.biocontrol.2007.03.003
  47. White, T.J., Bruns, T., Lee, S., and Taylor, J.W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315-322. In Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J. (eds.). PCR Protocols: A Guide to Methods and Applications, Academic Press Inc., New York, N.Y., USA.
  48. Zheng, X., Cheng, W., Wang, X., and Lei, C. 2011. Enhancement of supercooling capacity and survival by cold acclimation, rapid cold and heat hardening in Spodoptera exigua. Cryobiol. 63, 164-169. https://doi.org/10.1016/j.cryobiol.2011.07.005