Improvement of High-fat Diet-induced Obesity by Xanthigen in C57BL/6N Mice

잔티젠(Xanthigen)에 의한 고지방식이로 유도된 비만 개선 효과

  • Received : 2012.11.15
  • Accepted : 2012.11.26
  • Published : 2012.12.30


Obesity is a risk factor for numerous metabolic diseases. Recently, naturally occurring compounds that may improve obesity have received increasing attention. Xanthigen is a mixture of fucoxanthin and punicic acid derived from brown seaweed and pomegranate seed, respectively, which have been traditionally used for lipid-lowering effects in humans. In this study, we investigated whether Xanthigen attenuates high-fat diet-induced obesity in C57BL/6N mice. The mice were fed on a normal diet (ND), high-fat diet (HFD), HFD plus 1% Xanthigen or HFD plus 1% green tea extract (GTE) for 11 weeks. Food efficiency ratio (FER) and body weight were significantly reduced in mice fed HFD plus Xanthigen compared to HFD-fed mice. Consistent with the results in body weight change, Xanthigen also significantly decreased the weights of epididymal adipose tissue, retroperitoneal adipose tissue, and liver in HFD plus 1% Xanthigen-fed mice. The serum level of low-density lipoprotein (LDL)-cholesterol was significantly decreased in HFD plus Xanthigen-fed mice compared to HFD-fed mice. These results suggest that Xanthigen may be useful in the development of a functional health food for anti-obesity.


Xanthigen;C57BL/6N mice;obesity;adipose tissue;LDL-cholesterol


  1. Abidov, M., Ramazanov, Z., Seifulla, R. and Grachev, S. 2010. The effects of Xanthigen in the weight management of obese premenopausal women with non-alcoholic fatty liver disease and normal liver fat. Diabetes Obes. Metab. 12, 72-81.
  2. Ahn, I. S., Park, K. Y. and Do, M. S. 2007. Weight control mechanisms and anti-obesity functional agents. J. Korean Soc. Food Sci. Nutr. 36, 503-513.
  3. Barr, E. L., Cameron, A. J., Balkau, B., Zimmet, P. Z., Welborn, T. A., Tonkin, A. M. and Shaw, J. E. 2010. HOMA insulin sensitivity index and the risk of all-cause mortality and cardiovascular disease events in the general population: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab) study. Diabetologia 53, 79-88.
  4. Bjorntorp, P. 1988. The associations between obesity, adipose tissue distribution and disease. Acta. medica. Scandinavica Supplementum 723, 121-134.
  5. Boussetta, T., Raad, H., Letteron, P., Gougerot-Pocidalo, M. A., Marie, J. C., Driss, F. and El-Benna, J. 2009. Punicic acid a conjugated linolenic acid inhibits TNFalpha-induced neutrophil hyperactivation and protects from experimental colon inflammation in rats. PLoS One 4, e6458.
  6. Gasmi, J. and Sanderson, J. T. 2010. Growth Inhibitory, Antiandrogenic, and Pro-apoptotic Effects of Punicic Acid in LNCaP Human Prostate Cancer Cells. J. Agric. Food Chem.
  7. Grossmann, M. E., Mizuno, N. K., Schuster, T., and Cleary, M. P. 2010. Punicic acid is an omega-5 fatty acid capable of inhibiting breast cancer proliferation. Int. J. Oncol. 36, 421-426. 10, [Epub ahead of print].
  8. Hastie, C. E., Padmanabhan, S., Slack, R., Pell, A. C., Oldroyd, K. G., Flapan, A. D., Jennings, K. P., Irving, J., Eteiba, H., Dominiczak, A. F. and Pell, J. P. 2010. Obesity paradox in a cohort of 4880 consecutive patients undergoing percutaneous coronary intervention. Eur. Heart J. 31, 222-226.
  9. Hong, H. S., Park, J. S., Ryu, H. K. and Kim, W. Y. 2008. The association of plasma HDL-cholesterol level with cardiovascular disease related factors in Korean type 2 diabetic patients. Kor. Diabetes J. 32, 215-223.
  10. Hontecillas, R., O'shea, M., Einerhand, A., Diguardo, M. and Bassaganya-Riera, J. 2009. Activation of PPAR gamma and alpha by punicic acid ameliorates glucose tolerance and suppresses obesity-related inflammation. J. Am. Coll. Nutr. 28, 184-195.
  11. Jeon, J. R. and Kim, J. Y. 2006. Effects of pine needle extract on differentiation of 3T3-L1 preadipocytes and obesity in high-fat diet fed rats. Biol. Pharm. Bull. 29, 2111-2115.
  12. Jeon, S. M., Kim, H. J., Woo, M. N., Lee, M. K., Shin, Y. C., Park, Y. B. and Choi, M. S. 2010. Fucoxanthin-rich seaweed extract suppresses body weight gain and improves lipid metabolism in high-fat-fed C57BL/6J mice. Biotechnol. J. 5, 961-969.
  13. Kang, S. R., Kim, Y. K., Kim, S. G., Lee, S. H. and Kim, M. 2009. The effect of pine needle extracts on blood flow and serum lipid improvement. J. Life Sci. 19, 508-513.
  14. Kim, K. N., Heo, S. J., Kang, S. M., Ahn, G. and Jeon, Y. J. 2010. Fucoxanthin induces apoptosis in human leukemia HL-60 cells through a ROS-mediated Bcl-xL pathway. Toxicol. In Vitro 24, 1648-1654.
  15. Kim, K. N., Heo, S. J., Yoon, W. J., Kang, S. M., Ahn, G., Yi, T. H. and Jeon, Y. J. 2010. Fucoxanthin inhibits the inflammatory response by suppressing the activation of NF-kappaB and MAPKs in lipopolysaccharide-induced RAW 264.7 macrophages. Eur. J. Pharmacol. 649, 369-375.
  16. Lai, C. S., Tsai, M. L., Badmaev, V., Jimenez, M., Ho, C. T. and Pan, M. H. 2012. Xanthigen suppresses preadipocyte differentiation and adipogenesis through down-regulation of PPARgamma and C/EBPs and modulation of SIRT-1, AMPK, and FoxO pathways. J. Agric. Food Chem. 60, 1094-1101.
  17. Lee, J. J., Ha, T. M., Lee, Y. M., Kim, A. R. and Lee, M. Y. 2010. Effect of Brassica rapa sprouts on lipid metabolism in rats fed high fat diet. J. Korean Soc. Food Sci. Nutr. 39, 669-676.
  18. Liu, C. L., Liang, A. L. and Hu, M. L. 2011. Protective effects of fucoxanthin against ferric nitrilotriacetate-induced oxidative stress in murine hepatic BNL CL.2 cells. Toxicol. In Vitro 25, 1314-1319.
  19. Liu, W., Zheng, Y., Han, L., Wang, H., Saito, M., Ling, M., Kimura, Y. and Feng, Y. 2008. Saponins (Ginsenosides) from stems and leaves of Panax quinquefolium prevented high-fat diet-induced obesity in mice. Phytomedicine 15, 1140-1145.
  20. Maeda, H., Hosokawa, M., Sashima, T., Funayama, K. and Miyashita, K. 2005. Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem. Biophys. Res. Commun. 332, 392-397.
  21. Maeda, H., Hosokawa, M., Sashima, T., Murakami- Funayama, K. and Miyashita, K. 2009. Anti-obesity and anti-diabetic effects of fucoxanthin on diet-induced obesity conditions in a murine model. Mol. Med. Report 2, 897-902.
  22. Maeda, H., Hosokawa, M., Sashima, T., Takahashi, N., Kawada, T., and Miyashita, K. 2006. Fucoxanthin and its metabolite, fucoxanthinol, suppress adipocyte differentiation in 3T3-L1 cells. Int. J. Mol. Med. 18, 147-152.
  23. Korea Centers for Disease Control and Prevention, Obesity prevalence and trends in Korea (1998-2009).
  24. Roberts, A. W., Clark, A. L. and Witte, K. K. 2009. Review article: Left ventricular dysfunction and heart failure in metabolic syndrome and diabetes without overt coronary artery disease--do we need to screen our patients?. Diab. Vasc. Dis. Res. 6, 153-163.
  25. Spiegelman, B. M. and Flier, J. S. 2001. Obesity and the regulation of energy balance. Cell 104, 531-543.
  26. Tomkin, G. H. 2010. Atherosclerosis, diabetes and lipoproteins. Expert. Rev. Cardiovasc. Ther. 8, 1015-1029.
  27. Vroegrijk, I. O., Van Diepen, J. A., Van Den Berg, S., Westbroek, I., Keizer, H., Gambelli, L., Hontecillas, R., Bassaganya-Riera, J., Zondag, G. C., Romijn, J. A., Havekes, L. M. and Voshol, P. J. 2011. Pomegranate seed oil, a rich source of punicic acid, prevents diet-induced obesity and insulin resistance in mice. Food Chem. Toxicol. 49, 1426-1430.
  28. Woo, M. N., Jeon, S. M., Shin, Y. C., Lee, M. K., Kang, M. A. and Choi, M. S. 2009. Anti-obese property of fucoxanthin is partly mediated by altering lipid-regulating enzymes and uncoupling proteins of visceral adipose tissue in mice. Mol. Nutr. Food Res. 53, 1603-1611.
  29. Wu, C. H., Yang, M. Y., Chan, K. C., Chung, P. J., Ou, T. T. and Wang, C. J. 2010. Improvement in high-fat diet-induced obesity and body fat accumulation by a Nelumbo nucifera leaf flavonoid-rich extract in mice. J. Agric. Food Chem. 58, 7075-7081.
  30. The Organisation for Economic Co-operation and Development (OECD), OECD Health Data 2012.

Cited by

  1. Anti-obesity Effects of Curcuma longa L. Extracts through Inhibiting Adipogenic Transcription Factors vol.15, pp.2, 2017,
  2. Xanthigen attenuates high-fat diet-induced obesity through down-regulation of PPARγ and activation of the AMPK pathway vol.23, pp.3, 2014,


Supported by : 충북대학교