Studies on the Electrochemical Dissolution for the Treatment of 10 g-Scale Zircaloy-4 Cladding Hull Wastes in LiCl-KCl Molten Salts

LiCl-KCl 용융염 내에서 10 g 규모의 Zircaloy-4 폐 피복관 처리를 위한 전기화학적 용해 연구

  • Received : 2012.02.05
  • Accepted : 2012.09.11
  • Published : 2012.12.30


The electrochemical behaviors of 10 g-scale fresh and oxidized Zircaloy-4 cladding hulls were examined in $500^{\circ}C$ LiCl-KCl molten salts to confirm the feasibility of the electrorefining process for the treatment of hull wastes. In the results of measuring the potential-current response using a stainless steel basket filled with oxidized Zircaloy-4 hull specimens, the oxidation peak of Zr appears to be at -0.7 to -0.8 V vs. Ag/AgCl, which is similar to that of fresh Zircaloy-4 hulls, while the oxidation current is found to be much smaller than that of fresh Zircaloy-4 hulls. These results are congruent with the outcome of current-time curves at -0.78 V and of measuring the change in the average weight and thickness after the electrochemical dissolution process. Although the oxide layer on the surface affects the uniformity and rate of dissolution by decreasing the conductivity of Zircaloy-4 hulls, electrochemical dissolution is considered to occur owing to the defect of the surface and phase properties of the Zr oxide layer.

전해정련을 이용한 폐 피복관 처리의 타당성을 살펴보기 위하여, $500^{\circ}C$의 LiCl-KCl 용융염 내에서 표면이 산화된 10 g 규모의 Zircaloy-4 피복관 및 순수한 Zircaloy-4 피복관의 전기화학적 거동을 살펴보았다. 산화된 Zircaloy-4 피복관이 담긴 basket을 작업전극으로하여 전압-전류 관계를 측정한 결과, 산화되지 않은 Zircaloy-4 피복관과 비교해 Zr의 산화 peak는 Ag/AgCl 기준 전극 대비, 약 -0.7 V ~ -0.8 V로 유사한 반면, 산화 전류의 크기는 확연하게 감소하는 것으로 나타난다. 이러한 결과는 -0.78 V의 일정전위를 가한 전기화학적 용해 실험에서 살펴본 전류-시간 곡선에서도 유사하게 나타나며, 피복관 조각들의 평균 두께 및 무게 변화로부터 확인할 수 있다. Zircaloy-4 피복관이 산화되었을 경우, 표면의 산화막이 피복관의 전도성에 영향을 주어 basket 내 위치에 따라 전기화학적 용해의 균일성 및 속도를 떨어뜨리는 것으로 나타나지만, 표면의 미세한 결함과 Zr 산화물의 상 특성으로 인해 전기화학적 용해가 진행되는 것으로 판단된다.



  1. J. J. Laidler, J. E. Battles, W. E. Miller, J. P. Ackerman, and E. L. Carls, "Development of pyroprocessing technology", Prog. Nucl. Energ., 31, pp. 131-140 (1997).
  2. T. Inoue, "Actinide recycling by pyro-process with metal fuel FBR for future nuclear fuel cycle system", Prog. Nucl. Energ., 40, pp. 547-554 (2002).
  3. Jae-Hyung Yoo, Kwon-Pyo Hong and Han-Soo Lee, "A Conceptual Design Study for a Spent Fuel Pyroprocessing Facility of a Demonstration Scale", J. of the Korean Radioactive Waste Society, 6(3), pp. 233-244 (2008).
  4. H. Lee, G.-I. Park, K.-H. Kang, J.-M. Hur, J.-G. Kim, D.-H. Ahn, Y.-Z. Cho, and E. H. Kim, "Pyroprocessing technology development at KAERI", Nucl. Eng. Tech., 43, pp. 317-328 (2011).
  5. Dong-Keun Cho, Seok-Kyun Yoon, Heui-Joo Choi, Jongwon Choi and Won Il Ko, "Reference Spent Nuclear Fuel for Pyroprocessing Facility Design", J. of the Korean Radioactive Waste Society, 6(3), pp.225-232 (2008).
  6. M. K. Jeon, K. H. Kang, G. I. Park, Y. S. Lee, "Chlorination reaction behavior of Zircaloy-4 hulls: experimental and theoretical approaches", J. Radioanal. Nucl. Chem., 292, pp. 513-517 (2012).
  7. M. K. Jeon, K. H. Kang, C. M. Heo, J. H. Yang, C. H. Lee, and G. I. Park, "Effect of oxidation conditions on chlorination reaction of Zirclaoy-4 hulls", J. Nucl. Mat., 424, pp. 153-157 (2012).
  8. M. K. Jeon, K. H. Kang, G. I. Park, C. H. Lee, "Effect of chlorinating reagents on Zr recovery from Zircaloy- 4 hull wastes: reaction behavior simulation by using the HSC code", J. Radioanal. Nucl. Chem., 292, pp. 285-291 (2012).
  9. Y. Sakamura, "Zirconium behavior in molten LiCl- KCl eutectic", J. Electrochem. Soc., 151(3), pp. C187-C193 (2004).
  10. S. Ghosh, S. Vandarkuzhali, P. Venkatesh, G. Seenivasan, T. Subramanian, B. P. Reddy, and K. Nagarajan, "Electrochemical studies on the redox behavior of zirconium in molten LiCl-KCl eutectic", J. Electroanal. Chem., 627, pp. 15-27 (2009).
  11. R. Fujita, H. Nakamura, K. Mizuguchi, M. Sato, T. Shibano, Y. Ito, T. Goto, T. Terai, and S. Ogawa, "Zirconium recovery process for spent Zircaloy components from Light Water Reactor (LWR) by electrorefining in molten salts", Electrochem., 73, pp. 751-753 (2005).
  12. C. H. Lee, K. H. Kang, M. K. Jeon, C. M. Heo, and Y. L. Lee, "Electrorefining of zirconium from Zircaloy-4 cladding dulls in LiCl-KCl molten salts", J. Electrochem. Soc., 159(8), pp. D1-D6 (2012).
  13. C. Morant, J. M. Sanz, L. Galan, L. Soriano and F. Rueda, "An XPS study of the interaction of oxygen with zirconium", Surf. Sci., 218, pp. 331-345 (1989).
  14. Y. Nishino, A. R. Krauss, Y. Lin, D. M. Gruen, "Initial oxidation of zirconium and Zircaloy-2 with oxygen and water vapor at room temperature", J. Nucl. Mat., 228, pp. 346-353 (1996).
  15. D. J. Park, J. T. Park, and Y. H. Jeong, "Microstructural analysis and XPS investigation of nodular oxides formed on Zircaloy-4", J. Nucl. Mat., 412, pp. 233-238 (2011).