Speed Control of Linear Induction Motor using Sliding Mode Controller Considering the End Effects

  • Boucheta, A. (Laboratory of Command, Analysis and Optimization of Electro-Energetic Systems, University of Bechar) ;
  • Bousserhane, I.K. (Laboratory of Command, Analysis and Optimization of Electro-Energetic Systems, University of Bechar) ;
  • Hazzab, A. (Laboratory of Command, Analysis and Optimization of Electro-Energetic Systems, University of Bechar) ;
  • Sicard, P. (Groupe de recherche en electronique industrielle, Ecole d'Ingenierie, Departement de Genie electrique et Genie informatique. Universite du Quebec a Trois-Rivieres) ;
  • Fellah, M.K. (University of Djillali Liabes)
  • Received : 2010.09.10
  • Accepted : 2011.07.29
  • Published : 2012.01.01


In the present paper, the mover speed control of a linear induction motor (LIM) using a sliding mode control design is proposed, considering the end effects. First, the indirect field-oriented control LIM is derived, considering the end effects. The sliding mode control design is then investigated to achieve speed- and flux-tracking under load thrust force disturbance. The numerical simulation results of the proposed scheme present good performances in comparison to that of the classical sliding mode control.


  1. P. -K. Huang, Recurrent fuzzy neural network controlled linear induction motor drive based on genetic algorithm, Master Thesis, Chung Yuan Christian University, 2002.
  2. C. -Y. Hung, Adaptive control for rotary induction motor and linear induction motors, Master Thesis, Chung Yuan Christian University 2001.
  3. R. J. Kaye and E. Masada, Comparison of Linear Synchronous and Induction Motors, Urban Maglev Technology Development Program Colorado Maglev Project, Internal Rapport, 2004.
  4. S. P. Bhamidi, Design of a Single Sided Linear Induction Motor (Slim) Using A User Interactive Computer Program, Master Thesis, Missouri-Colombia University, 2005.
  5. R. -J. Wai and W. -K. Liu, "Nonlinear Decoupled Control For Linear Induction Motor Servo-Drive Using The Sliding-Mode Technique", IEE Proc. Control Theory Application, Vol. 148, No. 3, 2001, pp. 217-231.
  6. E. F. da Silva, E. B. dos Santos, P. C. M. Machado, M. A. A. de Oliveira, "Dynamic Model for Linear Induction Motors", IEEE Proc. of IClT 2003, Maribor (Slovenia), 2003, pp. 478-482.
  7. J. -H. Sung and K. Nam, "A New Approach to Vector Control for a Linear Induction Motor Considering End Effects", IEEE IAS annual meeting, 3-7 Oct, in Phoenix, Arizona, 1999, pp. 2284-2289.
  8. G. Kang and K. Nam, "Field-oriented control scheme for linear induction motor with the end effect", IEE Proc. Electr. Power Appl., Vol. 152, No. 6, November 2005, pp. 1565-1572.
  9. J. Liu, F. Lin, Z. Yang, T. Q. Zheng, "Field-Oriented Control of Linear Induction Motor Considering Attraction Force & End-Effects", IEEE Proc. Of IPEMC 2006.
  10. S. Vaez-Zadeh, M. R. Satvati, "Vector Control of Linear Induction Motors with End Effect Compensation", The Eight International Conference on Electrical Machines and Systems (ICEMS), 2005, pp. 635-638.
  11. Z. Zhang, Eastham, T. R. and G. E., Dawson, "Peak thrust operation of linear induction machines from parameter identification". Proc. IEEE, IASC, 1995, pp. 375-379
  12. B. Kwon, K. Woo, S. Kim. "Finite Element Analysis of Direct Thrust-controlled Linear induction motor", pp, 1306-1309, IEEE Trans. on Magnetics, Vol. 35, No 3, 1999.
  13. R. C. Creppe, "Dynamic Behavior of a linear induction Motor", Proc. Of Medifterranean Electrotechnical Conference, Vol. 2, 1998.
  14. N. Fujii, T. Kayasuga and T. Hoshi, "Simple End Effect Compensator for Linear Induction Motor", IEEE Trans. On Mag., Vol. 38, No 5, September 2002, pp. 3270-272.
  15. B. K. Bose, Modern Power Electronics and AC Drives, Printice Hall PTR, USA, 2002, ISBN 0-13-016743-6.
  16. J. P. Caron and J. P. Hautier (1995), Modelling and Control of Induction Machine, Technip Edition, France (text in french).
  17. F. -J. Lin, D. -H. Wang and P. -K. Huang, "FPGA-Based Fuzzy Sliding-Mode Control For A Linear Induction Motor Drive", IEE Proc. Electr. Power Appl., Vol. 152, No. 5, 2005, pp. 1137-1148.
  18. F. -J. Lin, P. -H. Shen and S. -P. Hsu, "Adaptive backstepping sliding mode control for linear induction motor", IEE Proc. Electr. Power Appl., Vol. 149, No. 3, pp. 184-194, May 2002.
  19. F. -J. Lin, R. -J. Wai, W. -D. Chou, and S. -P. Hsu, "Adaptive Backstepping Control Using Recurrent Neural Network for Linear Induction Motor Drive", IEEE Trans. on Ind. Elect., Vol. 49, No 1, 2002, pp. 134-146.
  20. V. I. Utkin, "Sliding Mode Control Design Principles and Applications to Electric Drives", IEEE Trans. Ind. Electr., Vol. 40. No 01, 1993, pp. 23-36.
  21. J. J., Slotine, Applied Nonlinear Control, Prentice-Hall. Inc., 1991, ISBN 0-13-040890-5.
  22. R. -J. Wai, "Adaptive Sliding-Mode Control for Induction Servomotor Drives", IEE Proc. Elect. Power Appl., 2000, Vol. 147, pp. 553-562.
  23. J. Soltani, and M. A. Abbasian, "Robust Nonlinear Control of Linear Induction Motor Taking Into Account the Primary End-Effects", IEEE Proc. Of IPEMC, 2006, pp. 1-6.
  24. C. -M. Lin and C. -F. Hsu, "Adaptive Fuzzy Sliding-Mode Control for Induction Servomotor Systems", IEEE Transactions on Energy Conversion, vol. 19, no2, June 2004, pp. 362-368
  25. R. -J. Wai, C. -M. Lin and C. -F. Hsu, "Adaptive Fuzzy Sliding-Mode Control for Electrical Servo Drives", Fuzzy Sets and Systems 143, 2004, 295-310.
  26. S. G., Tzafestas and G. G., Rigatos, "Design and Stability Analysis of a New Sliding-Mode Fuzzy Logic Controller of Reduced Complexity", Machine Intelligence & Robotic Control, Vol. 1, No. 1, 1999, pp. 27-41.

Cited by

  1. Trajectory Tracking Control of a Real Redundant Manipulator of the SCARA Type vol.11, pp.1, 2016,
  2. Modeling and Hardware Implementation on the FPGA of a Variable Structure Control Associated with a DTC-SVM of an Induction Motor vol.45, pp.16, 2017,
  3. Design, simulation and comparison of controllers for a redundant robot vol.3, 2016,
  4. Improved Model-Free Adaptive Sliding-Mode-Constrained Control for Linear Induction Motor considering End Effects vol.2018, pp.1563-5147, 2018,