DOI QR코드

DOI QR Code

농경지 토양에 집적된 인산의 생물이용가능성 평가

Evaluation of Bioavailability of Phosphorus Accumulated in Arable Soils

  • 이슬비 (농촌진흥청 국립농업과학원) ;
  • 이창훈 (농촌진흥청 국립농업과학원) ;
  • 김건엽 (농촌진흥청 국립농업과학원) ;
  • 이종식 (농촌진흥청 국립농업과학원) ;
  • 소규호 (농촌진흥청 국립농업과학원) ;
  • 김상윤 (경상대학교 응용생명과학부) ;
  • 김필주 (경상대학교 응용생명과학부)
  • Lee, Seul-Bi (National Academy of Agricultural Science, RDA) ;
  • Lee, Chang-Hoon (National Academy of Agricultural Science, RDA) ;
  • Kim, Gun-Yeob (National Academy of Agricultural Science, RDA) ;
  • Lee, Jong-Sik (National Academy of Agricultural Science, RDA) ;
  • So, Kyu-Ho (National Academy of Agricultural Science, RDA) ;
  • Kim, Sang-Yoon (Division of Applied Life Science (BK 21 Program), Gyeongsang National University) ;
  • Kim, Pil-Joo (Division of Applied Life Science (BK 21 Program), Gyeongsang National University)
  • 투고 : 2012.10.23
  • 심사 : 2012.11.23
  • 발행 : 2012.12.31

초록

본 연구에서는 화학비료와 퇴비를 과다하게 투입하여 인산의 집적 및 유출 위험성이 높은 양파-벼 재배지와 시설재배지의 인산 집적 특성과 인산가수분해효소를 이용한 집적 인산의 수계에서의 생물이용가능성을 평가하였다. 수용성 인산 중 많은 부분의 유기태 인산이 주변 수계에 유출될 위험성이 높았지만 그동안 제대로 평가되지 못했다. 본 연구결과에서 alkaline phosphomonoesterase와 phosphodiesterase에 의해 이모작토양에서 DUP의 12, 24%가 시설재배지 토양에서 DUP의 18과 44%가 분해되는 것으로 나타났다. 토양에 축적된 유기태 인산중 orthophosphate monoester와 diester가 주로 인산분해효소에 의해 분해되어 농경지 주변 수계로 유출시 생물 이용 가능성이 큰 것으로 평가되었다. 따라서 수계에서 인산의 거동을 이해할 때 유기태 인산에 대한 충분한 고려가 필요할 것이다.

키워드

Bioavailability;Phosphatase hydrolysis;Soil phosphorus

과제정보

연구 과제 주관 기관 : Rural Development Administration

참고문헌

  1. Bieleski, R.L., 1973. Phosphate pools, phosphate transport and phosphate availability, Annual Review of Plant Physiol. & Plant Mol. Biol. 24, 225-252. https://doi.org/10.1146/annurev.pp.24.060173.001301
  2. Dick, W.A., Tabatabai, M.A., 1978. Hydrolysis of organic and inorganic phosphorus compounds added to soils, Geoderma, 21, 175-182. https://doi.org/10.1016/0016-7061(78)90025-3
  3. Egawa, T., Nonaka, M., 1980. Studies on soil organic phosphorus. 1) Organic phosphorus content in some Andosols, Bull. of the faculty of agriculture Meiji University, 52, pp. 55-68 (in Japanese with English summary).
  4. Harrison, A.F., 1987. Soil organic phosphorus: a review of world literature, p. 257, CAB International, Wallingford, UK
  5. Hayes, J.E., Richardson, A.E., Simpson, R.J., 2000. Components of organic phosphorus in soil extracts that are hydrolysed by phytase and acid phosphatase, Biol. Fert. Soils, 32, 279-286. https://doi.org/10.1007/s003740000249
  6. He, Z., Griffin, T.S., Honeycutt, C.W., 2004. Enzymatic hydrolysis of organic phosphorus in swine manure and soil, J. Environ. Qual. 33, 367-372. https://doi.org/10.2134/jeq2004.0367
  7. Hens, M., Merckx, R., 2001. Functional characterization of colloidal phosphorus species in the soil solution of sandy soils, Environ. Sci. Technol. 35, 493-500. https://doi.org/10.1021/es0013576
  8. Kim, Y.W., 1996. Impacts of fertilizer on agricultural environment and its countermeasure, pp. 57-81. '96 Symposium on agricultural environment, Korean Society of Environmental Agriculture.
  9. Kim, C.G., 2007, Development & evaluation of nutrient gross indicators by applying nutrient balance indicators, pp. 27-55, Workshop on Development of OECD agri-environmental indicators and its political application, RDA.
  10. Lee, Y., Jung, P.G., 2006. Nutrient balance indicators, p. 68, Development& evaluation of OECD agrienvironmental indicators, KREI & RDA, Korea (in Korean).
  11. Lee, S.B., Lee, C.H. Hong, C.O., Lee, Y.B., Kim, P.J., 2010. Evaluation of phosphorus release potential in arable land with different landuse by phosphorus threshold, Korean J. Environ Agri. 29(4), 343-347. https://doi.org/10.5338/KJEA.2010.29.4.343
  12. Makarov, M.I., Haumaier, L., Zech, W., 2002. Nature of soil organic phosphorus: An assessment of peak assignments in the diester region of $^{31}P$ NMR spectra, Soil Biol. Biochem. 34, 1467-1477. https://doi.org/10.1016/S0038-0717(02)00091-3
  13. McKelvie, I.D., Hart, B.T., Cardwell, T.J., Cattrall, R.W., 1995. Use of immobilized 3-phytase and flow injection for the determination of phosphorus species in natural waters, Anal. Chim. Acta. 316, 277-289. https://doi.org/10.1016/0003-2670(95)00373-8
  14. Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters, Anal. Chim. Acta. 27, 31-36. https://doi.org/10.1016/S0003-2670(00)88444-5
  15. Pant, H.K., Edwards, D., Vaughan, A.C., 1994. Extraction, molecular fractionation and enzyme degradation of organically associated phosphorus in soil solutions, Biol. Fert. Soils, 17, 196-200. https://doi.org/10.1007/BF00336322
  16. RDA (Rural Development Administration), 1988. Methods of Soil Chemical Analysis, National Institute of Agricultural Science and Technology, RDA, Suwon, Korea (in Korean)
  17. RDA (Rural Development Administration), 1999. Fertilization standards to crop plants, p.148, National Institute of Agricultural Science and Technology, RDA. Suwon, Korea (in Korean).
  18. Stott, D.E., Tabatabai, M.A., 1985. Identification of phospholipids in soils and sewage sludges by high-performance liquid chromatography, J. Environ. Qual. 14, 107-110.
  19. Turner, B.L., McKelvie, I.D., 2002. A novel technique for the pre-concentration and extraction of inositol hexakisphosphate from soil extracts with determination by phosphorus-31 nuclear magnetic resonance, J. Environ. Qual. 31, 466-470. https://doi.org/10.2134/jeq2002.0466
  20. Turner, B.L., 2003. Organic phosphorus transfer from terrestrial to aquatic environments, in: Turner, B.L. (Eds), Organic phosphorus in the environment, CABI Publishing, pp. 269-294.
  21. Turner, B.L., 2007. Inositol phosphates in soil: Amounts, forms and significance of the phosphorylated inositol stereoisomers. in: Turner, B.L. (Eds), Inositol phosphates: Linking agriculture and the environment, CAB Int., Wallingford, UK. pp. 186-207.

피인용 문헌

  1. Occurrence of Floating Algae by Phosphoric Acid according to Transplanting Time and the Effect of Chemical Control in Paddy Fields vol.30, pp.2, 2018, https://doi.org/10.12719/KSIA.2018.30.2.87