DOI QR코드

DOI QR Code

Present Status and Future Prospect of Quantum Dot Technology

양자점 (Quantum dot) 기술의 현재와 미래

  • Hong, H.S. (Advanced Materials & Processing Center, Institute for Advanced Engineering(IAE)) ;
  • Park, K.S. (Advanced Materials & Processing Center, Institute for Advanced Engineering(IAE)) ;
  • Lee, C.G. (Advanced Materials & Processing Center, Institute for Advanced Engineering(IAE)) ;
  • Kim, B.S. (Department of Rare Metals, Korea Institute of Industrial Technology (KITECH)) ;
  • Kang, L.S. (Advanced Materials & Processing Center, Institute for Advanced Engineering(IAE)) ;
  • Jin, Y.H. (Advanced Materials & Processing Center, Institute for Advanced Engineering(IAE))
  • 홍현선 (고등기술연구원 신소재공정센터) ;
  • 박경수 (고등기술연구원 신소재공정센터) ;
  • 이찬기 (고등기술연구원 신소재공정센터) ;
  • 김범성 (한국생산기술연구원 희소금속산업기술센터) ;
  • 강이승 (고등기술연구원 신소재공정센터) ;
  • 진연호 (고등기술연구원 신소재공정센터)
  • Published : 2012.12.28

Abstract

Nowadays, research and development on quantum dot have been intensively and comprehensively pursued worldwide in proportion to concurrent breakthrough in the field of nanotechnology. At present, quantum dot technology forms the main interdisciplinary basis of energy, biological and photoelectric devices. More specifically, quantum dot semiconductor is quite noteworthy for its sub-micro size and possibility of photonic frequency modulation capability by controlling its size, which has not been possible with conventionally fabricated bulk or thin film devices. This could lead to realization of novel high performance devices. To further understand related background knowledge of semiconductor quantum dot at somewhat extensive level, a review paper is presently drafted to introduce basics of (semiconductor) quantum dot, its properties, applications, and present and future market trend and prospect.

References

  1. Handbook of Nanostructured Materials and Nanotechnology (Ed: H. S. Nalwa), Academic Press, New York (2000).
  2. Nanowires and Nanobelts: Materials, Properties and Devices (Ed: Z. L. Wang), Kluwer Academic Publishers, Boston (2003).
  3. P. Roussignol, D. Ricard and C. Flytzanis: Phys. Rev. Lett., 62 (1989) 312. https://doi.org/10.1103/PhysRevLett.62.312
  4. D. J. Norris, A. Sacra, C. B. Murray and M. G. Bawendi: Phys. Rev. Lett., 72 (1994) 2612. https://doi.org/10.1103/PhysRevLett.72.2612
  5. C. B. Murray, D. J. Norris and M. G. Bawendi: J. Am. Chem. Soc., 115 (1993) 8706. https://doi.org/10.1021/ja00072a025
  6. P. Reiss, J. Bleuse and A. Pron: Nano Lett., 2 (2002) 781. https://doi.org/10.1021/nl025596y
  7. Z. A. Peng and X. Peng: J. Am. Chem. Soc., 123 (2001) 183. https://doi.org/10.1021/ja003633m
  8. L. Qu, Z. A. Peng and X. Peng: Nano Lett., 1 (2001) 333. https://doi.org/10.1021/nl0155532
  9. T. Torimoto, J. P. Reyes, K. Iwasaki, B. Pal, T. Shibayama, K. Sugawara, H. Takahashi and B. Ohtani: J. Am. Chem. Soc., 125 (2003) 316. https://doi.org/10.1021/ja0278133
  10. Y. Tian, T. Newton, N. A. Kotov, D. M. Guldi and J. H. Fendler: J. Phys. Chem., 100 (1996) 8927. https://doi.org/10.1021/jp951965l
  11. M. Danek, K. F. Jensen, C. B. Murray and M. G. Bawendi: Chem. Mater. 8 (1996) 173. https://doi.org/10.1021/cm9503137
  12. A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian and E. H. Sargent: Nat. Nanotechnol., 7 (2012) 577. https://doi.org/10.1038/nnano.2012.127

Cited by

  1. Surface Treatment Method for Long-term Stability of CdSe/ZnS Quantum Dots vol.24, pp.1, 2017, https://doi.org/10.4150/KPMI.2017.24.1.1
  2. Growth mechanism of InP and InP/ZnS synthesis using colloidal synthesis vol.24, pp.1, 2017, https://doi.org/10.4150/KPMI.2017.24.1.6
  3. Study on UV Opto-Electric Properties of ZnS:Mn/ZnS Core-Shell QD vol.55, pp.1, 2018, https://doi.org/10.4191/kcers.2018.55.1.04