DOI QR코드

DOI QR Code

Fluorescent Magnetic Silica Nanotubes with High Photostability Prepared by the Conventional Reverse Micro-Emulsion Method

  • Zhang, Yuhai ;
  • Son, Sang Jun
  • Received : 2012.11.03
  • Accepted : 2012.11.06
  • Published : 2012.12.20

Abstract

Magnetic fluorescent silica nanotubes were fabricated using reverse micro-emulsions coupled with conventional sol-gel methods. Anodic aluminum oxide templates were used to separate spatially the magnetic and the fluorescent moieties on individual nanotubes and so prevent quenching of the fluorescence. C18 and fluorescent layers were deposited sequentially on silica. Magnetism was then obtained by the introduction of pre-made magnetic nanoparticles inside the nanotubes. The photo- and chemical stabilities of nanotubes were demonstrated through dye release and photobleaching tests. The produced nanotubes did not show fluorescence quenching upon the addition of the nanoparticles, an advantage over conventional spherical fluorescent magnetic nanoparticles. High photostability of nanotubes, magnetism and biocompatiblily make them potentially useful in bioanalysis.

Keywords

Silica nanotube;Magnetic;Fluorescent;Dual functionality;Fluorescence quenching

References

  1. Beck-Broichsitter, M.; Gauss, J.; Packhaeuser, C. B.; Lahnstein, K.; Schmehl, T.; Seeger, W.; Kissel, T.; Gessler, T. Int. J. Pharm. 2009, 367, 169. https://doi.org/10.1016/j.ijpharm.2008.09.017
  2. Chang, I. P.; Hwang, K. C.; Chiang, C. S. J. Am. Chem. Soc. 2008, 130, 15476. https://doi.org/10.1021/ja804253y
  3. Huang, Y. F.; Chang, H. T.; Tan, W. Anal. Chem. 2008, 80, 567. https://doi.org/10.1021/ac702322j
  4. Wang, G. P.; Song, E. Q.; Xie, H. Y.; Zhang, Z. L.; Tian, Z. Q.; Zuo, C.; Pang, D. W.; Wu, D. C.; Shi, Y. B. Chem. Commun. 2005, 4276.
  5. Xie, H. Y.; Zuo, C.; Liu, Y.; Zhang, Z. L.; Pang, D. W.; Li, X. L.; Gong, J. P.; Dickinson, C.; Zhou, W. Small 2005, 1, 506. https://doi.org/10.1002/smll.200400136
  6. Kim, H.; Achermann, M.; Balet, L. P.; Hollingsworth, J. A.; Klimov, V. I. J. Am. Chem. Soc. 2005, 127, 544. https://doi.org/10.1021/ja047107x
  7. Wang, G.; Wang, C.; Dou, W.; Ma, Q.; Yuan, P.; Su, X. J. Fluoresc. 2009, 19, 939. https://doi.org/10.1007/s10895-009-0493-8
  8. Chen, C. C.; Liu, Y. C.; Wu, C. H.; Yeh, C. C.; Su, M. T.; Wu, Y. C. Adv. Mater. 2005, 17, 404. https://doi.org/10.1002/adma.200400966
  9. Zhang, L. L.; Lin, Y. M.; Zhou, H. C.; Wei, S. D.; Chen, J. H. Molecules 15, 420.
  10. Yang, X.; Tang, H.; Cao, K.; Song, H.; Sheng, W.; Wu, Q. J. Material Chem. 2011, 21, 6122. https://doi.org/10.1039/c0jm04516k
  11. Masuda, H.; Fukuda, K. Science 1995, 268, 1466. https://doi.org/10.1126/science.268.5216.1466
  12. Kovtyukhova, N. I.; Mallouk, T. E.; Pan, L.; Dickey, E. C. J. Am. Chem. Soc. 2003, 125, 9761. https://doi.org/10.1021/ja0344516
  13. Kovtyukhova, N. I.; Mallouk, T. E.; Mayer, T. S. Adv. Mater. 2003, 15, 780. https://doi.org/10.1002/adma.200304701
  14. Zhao, X. J.; Bagwe, R. P.; Tan, W. H. Adv. Mater. 2004, 16, 173. https://doi.org/10.1002/adma.200305622
  15. Yu, J.; Bai, X.; Suh, J.; Lee, S. B.; Son, S. J. J. Am. Chem. Soc. 2009, 131, 15574. https://doi.org/10.1021/ja905485s
  16. Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. Nature 2005, 437, 121. https://doi.org/10.1038/nature03968
  17. Son, S. J.; Reichel, J.; He, B.; Schuchman, M.; Lee, S. B. J. Am. Chem. Soc. 2005, 127, 7316. https://doi.org/10.1021/ja0517365
  18. Zhao, X.; Tapec-Dytioco, R.; Tan, W. J. Am. Chem. Soc. 2003, 125, 11474. https://doi.org/10.1021/ja0358854
  19. Bai, X.; Son, S. J.; Zhang, X.; Liu, W.; Jordan, E. K.; Frank, J. A.; Venkatesan, T.; Lee, S. B. Nanomedicine 2008, 3, 163. https://doi.org/10.2217/17435889.3.2.163

Cited by

  1. Templated Synthesis and Chemical Behavior of Nickel Nanoparticles within High Aspect Ratio Silica Capsules vol.117, pp.48, 2013, https://doi.org/10.1021/jp409878a

Acknowledgement

Supported by : Korea Research Foundation