DOI QR코드

DOI QR Code

Comparison of Two Ovarian Malignancy Prediction Models Based on Age Sonographic Findings and Serum Ca125 Measurement

  • Arab, Maliheh (Gynecology-Oncology, Imam Hossein Medical Center, Shahid Beheshti University of Medical Sciences) ;
  • Yaseri, Mehdi (School of Public Health and Institute of Public Health Research, Tehran University of Medical Sciences) ;
  • Ashrafganjoi, Tahereh (Gynecology-Oncology, Imam Hossein Medical Center, Shahid Beheshti University of Medical Sciences) ;
  • Maktabi, Maryam (Obstetrics and Gynecology, Imam Hossein Medical Center, Shahid Beheshti University of Medical Sciences) ;
  • Noghabaee, Giti (General physician, Imam Hossein Medical Center, Shahid Beheshti University of Medical Sciences) ;
  • Sheibani, Kourosh (Clinical Research and Development Center, Imam Hossein Medical Center, Shahid Beheshti University of Medical Sciences)
  • Published : 2012.08.31

Abstract

Objective: The aim of our study is to compare an ovarian malignancy prediction model based on age and four sonographic findings (OMPS1) with a new model called OMPS2 which differs just by adding serum CA125 measurement to (OMPS1). Methods: In a cross sectional comparative study OMPS1 was validated in 830 operated ovarian masses within a 3 years period (2006-2009). Logistic regression analysis was used to construct OMPS2 based on OMPS1 adding serum CA125 findings. The area under the curve for two models was compared in 411 patients. Results: OMPS2 was calculated as follows: OMPS1 + 1.444 (if serum CA125= 36-200) or 3.842 (if serum CA125 is more than 200). AUC of OMPS2 was increased to 84.3% (CI 95% 78.1- 89.8) in comparison to OMPS1 with AUC of 78.1% (CI 95% 71.8-84.5). Conclusion: Our second model is more accurate in prediction of ovarian malignancy, compared with our first model.

Keywords

Logistic model;ovarian mass;ultrasound;serum CA125;ovarian cancer

References

  1. Baker TR, Piver MS (1994). Etiology, biology , and epidemiology of Ovarian Cancer. Semin Surg Oncol, 10, 242-8. https://doi.org/10.1002/ssu.2980100403
  2. Arab M, Yaseri M, Farzaneh M, et al (2010). The construction and validation of a new ovarian malignancy probability score (OMPS) for prediction of ovarian malignancy. Iran J Cancer Prev, 3, 132-8.
  3. Benedet JL, Bender H, Jones lll (2000). Ngan hys, pecorelli s. figo staging classifications and clinical practice guidelines in the management of gynecologic cancers. Int J Gynecol Oobstet, 70, 409-62.
  4. Benjapibal M, Neungton C (2007). Pre-operative prediction of serum CA125 level in women with Ovarian masses. J Med Assoc Thai, 90, 1986-91.
  5. BenJopibal M, Sunsancvitayakul P, Phatihattakorn C, Suphanit I, lamurairat W (2003). Sonographic morphological pattern in the pre-operative prediction of ovarian masses. J Med Assoc Thai, 86, 332-7.
  6. Boente MP, Schilder R, Ozols RF (1999). Gynecological Cancers. Cancer Chemother Biol Response Modif, 18, 418-34.
  7. Campos Torres JC, Mauricette Derchain SF, Faundes A, et al (2002). Risk of malignancy index in preoperative evaluation of clinically restricted ovarian cancer. Sao Paulo Med j, 120, 72-6. https://doi.org/10.1590/S1516-31802002000300003
  8. Caruso A, Caforio L, Testa Ac, et al (1996). Transvaginal color doppler ultrasonography in the presurgical characterization of adnexal masses. Gynecol Oncol, 63, 184-91. https://doi.org/10.1006/gyno.1996.0304
  9. Depriest PD, Vartner E, Powell J (1999). The efficacy of a sonographic morphology index in identifying ovarian cancer: a multi-institution of investigation. Gynecol Oncol, 55, 174-8.
  10. Diamandis EP, Scorilas A, Fracchioli S (2003). Human kallikrein 6(HK6): a new potential serum biomarker for diagnosing and prognosis of ovarian carcinoma. J clin oncol, 21, 1035-43. https://doi.org/10.1200/JCO.2003.02.022
  11. Edgell T, Roussety GM, Barker G, et al (2010). Phase II biomarker Trial of a multimarker diagnostic for Ovarian Cancer, 136, 1079-88. https://doi.org/10.1007/s00432-009-0755-5
  12. Enakpene CA, Omigbodun AO, Geocke TW, Odukogbe AT, Beckmann MW (2009). Preoperative evaluation and triage of women with Suspicious adnexal masses using risk of malignancy index. J Obstet Gynecol, 35, 131-8.
  13. Holschneider CH, Berek JS (2000). Ovarian cancer: epidemiology, biology, and prognostic factors. Semin Surg Oncol, 19, 3-10. https://doi.org/10.1002/1098-2388(200007/08)19:1<3::AID-SSU2>3.0.CO;2-S
  14. Javitt MC (2007). ACR appropriateness criteria on staging and follow up of ovarian cancer. J AM Coll Radiol, 4, 586-9. https://doi.org/10.1016/j.jacr.2007.05.019
  15. Kinkel K, Hricak H, IU Y, Tsuda K, Filly RA (2000). Us characterization of ovarian masses: a meta-analysis. Radiology, 217, 803-11. https://doi.org/10.1148/radiology.217.3.r00dc20803
  16. Kurjak A, Predanic M (1992). New scoring system for prediction of ovarian malignancy based on transvaginal color dopplor sonography. J Ultrasound Med, 11, 631-8. https://doi.org/10.7863/jum.1992.11.12.631
  17. Leelahakorn S, TangjiTamol S, Manusirivithaya (2005). Comparison of ultrasound Score, CA125, Menopausal Status , and risk of malignancy index in differentiating between benign and borderline or malignant Ovarian tumors. J Med Assoc Thai, 88, 22-30.
  18. Marjunath AP, Pratapkumar, Sujatha K, Vani R (2001). Comparison of three risk of malignancy indices in evaluation of pelvic masses. Gynecol Oncol, 81, 225-9. https://doi.org/10.1006/gyno.2001.6122
  19. Mederiros LR, Fachel JM, Garry K, Stein AT, Furness S (2005). Laparascopy versus laparatomy for benign ovarian tumors. Cochrane Database of Systematic Reviews, 3, 1002-10.
  20. Moolthiya W, Yuenyao P (2009). The risk of malignancy index (rmi) in diagnisis of ovarian malignancy. Asian Pac J Cancer Prev, 10, 865-68.
  21. Obeidat BR, Amarin ZO, Latimer JA (2004). Risk of malignancy index in the preoperative evaluation of pelvic masses. Int J Gynaecol Obstet, 85, 255-8. https://doi.org/10.1016/j.ijgo.2003.10.009
  22. Oriel KA, Hartenbach EM, Remington PL (1999). Trends in United States Ovarian Cancer mortality, 1979-1995. Obstet Gynecol, 93, 30-3. https://doi.org/10.1016/S0029-7844(98)00397-4
  23. Rufford BD, Jacobs J (2003). Ovarian cysts in postmen opausal women. RCOG Guided, 34, 1-8.
  24. Soegaard R, Knudsen A, Rix P (2003). Risk of malignancy index in the preoperative evaluation of patients with adnexal masses. Gynecol oncol, 90, 109-12. https://doi.org/10.1016/S0090-8258(03)00192-6
  25. Szpurek D, Moszynski R, Smolen A, Sajdak S (2005). Artificial neural network computer prediction of ovarian malignancy in women with adnexal masses. Int J Gynecol Obstet, 89, 108-13. https://doi.org/10.1016/j.ijgo.2005.01.034
  26. Szpurek O, Moszynski P, zietkowiak W, Spaczynski M, Sajdak S (2005).An ultrasonographic morphological index for prediction of ovarian tumor malignancy. Eur J Gynecol Oncol, 26, 51-4.
  27. Trim Bus JB,Vergote I, Bolis G, et al (2003). Impact of adjuvant chemotherapy and Surgical Staging in early-stage ovarian carcinoma: european organization for research and treatment of cancer-adjuvant chemotherapy in ovarian neoplasm trial. J Natl Cancer Inst, 95, 113-25. https://doi.org/10.1093/jnci/95.2.113
  28. Ulusoy S, Akbayir O, Numanoglu C (2007). The risk of malignancy index in discrimination of adnexal masses. Int J Gynecol Obstet, 96, 186-91.
  29. Valentin L (1999). Prospective cross-validation of Doppler ultrasound examination and gray-scale ultrasound imaging for discrimination of benign and malignant pelvic masses. Ultrasound Obstet Gynecol, 14, 273-83. https://doi.org/10.1046/j.1469-0705.1999.14040273.x
  30. Valentin L, Hagen B, Tingulstad S, Eik-Nes S (2001). Comparison of pattern recognition and logistic regression models for discrimination between benign and malignant pelvic masses: a prospective cross validation. Ultrasound Obstet Gynecol, 18, 357-65. https://doi.org/10.1046/j.0960-7692.2001.00500.x
  31. Valentin L (2004). Use of morphology to characterize and manage common adnexal masses. Best Pract Res Clin Obstet Gynaecol, 18, 71-89. https://doi.org/10.1016/j.bpobgyn.2003.10.002
  32. Vernooij F, Heintz P, Witteveen E, Vendergraf Y (2007). The outcomes of ovarian cancer treatment are better when provided by gynecologic oncologists and in specialized hospitals: a systematic review. Gynecl Oncol, 105, 801-12. https://doi.org/10.1016/j.ygyno.2007.02.030
  33. Winter WE, Maxwel GL, Tian C, et al (2007). Prognostic factors for stage iii epithelial ovarian cancer: a gynecologic oncology group study. J Clin Oncol, 23, 3621-7.

Cited by

  1. IOTA Simple Rules in Differentiating between Benign and Malignant Ovarian Tumors vol.15, pp.13, 2014, https://doi.org/10.7314/APJCP.2014.15.13.5123
  2. Comparison of Neutrophil/Lymphocyte and Platelet/Lymphocyte Ratios for Predicting Malignant Potential of Suspicious Ovarian Masses in Gynecology Practice vol.15, pp.15, 2014, https://doi.org/10.7314/APJCP.2014.15.15.6239