DOI QR코드

DOI QR Code

Calcium Sensing Receptor Modulation for Cancer Therapy

  • Sarkar, Puja ;
  • Kumar, Sudhir
  • Published : 2012.08.31

Abstract

The calcium sensing receptor (CaSR) is a member of the largest family of cell surface receptors, the G protein-coupled receptors involved in calcium homeostasis. The role of the CaSR in neoplasia appears to be homeostatic; loss of normal CaSR-induced response to extracellular calcium is observed in cancers of the colon and ovary, while increased release of PTHrP is observed in cancers of the breast, prostate and Leydig cells. Currently CaSR can be considered as a molecule that can either promote or prevent tumor growth depending on the type of cancer. Therefore, recognition of the multifaceted role of CaSR in gliomas and other malignant tumors in general is fundamental to elucidating the mechanisms of tumor progression and the development of novel therapeutic agents. Emphasis should be placed on development of drug-targeting methods to modulate CaSR activity in cancer cells.

Keywords

CaSR;GPCR;metastasis;PTHrP;homeostasis;cancer cells

References

  1. Adams GB, Chabner KT, Alley IR, et al (2006). Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature, 439, 599-3. https://doi.org/10.1038/nature04247
  2. Al-Haddad S, Zhang Z, Leygue E, et al (1999). Psoriasin (S100A7) expression and invasive breast cancer. Am J Pathol, 155, 2057-6. https://doi.org/10.1016/S0002-9440(10)65524-1
  3. Arnold A, Kim HG, Gaz RD, et al (1989). Molecular cloning and chromosomal mapping of DNA rearranged with the parathyroid hormone gene in a parathyroid adenoma. J Clin Invest, 83, 2034-0. https://doi.org/10.1172/JCI114114
  4. Auersperg N, Edelson MI, Mok SC, Johnson SW, Hamilton TC (1998). The biology of ovarian cancer. Semin Oncol, 25, 281-04.
  5. Auersperg N, Maines-Bandiera SL, Dyck HG, Kruk PA (1994). Characterization of cultured human ovarian surface epithelial cells: phenotypic plasticity and premalignant changes. Lab Invest, 71, 510-8.
  6. Bandyopadhyay S, Tfelt-Hansen J, Chattopadhyay N (2010). Diverse roles of extracellular calcium-sensing receptor in the central nervous system. J Neurosci Res, 88, 2073-2. https://doi.org/10.1002/jnr.22391
  7. Barrett PQ, Kojima I, Kojima K, et al (1986). Short term memory in the calcium messenger system. Evidence for a sustained activation of protein kinase C in adrenal glomerulosa cells. Biochem J, 238, 905-2. https://doi.org/10.1042/bj2380905
  8. Bellahcene A, Castronovo V, Ogbureke KU, Fisher LW, Fedarko NS (2008). Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nat Rev Cancer, 8, 212-26. https://doi.org/10.1038/nrc2345
  9. Bhagavathula N, Hanosh AW, Nerusu KC et al (2007). Regulation of E-cadherin and beta-catenin by $Ca^{2+}$ in colon carcinoma is dependent on calcium-sensing receptor expression and function. Int J Cancer, 121, 1455-2. https://doi.org/10.1002/ijc.22858
  10. Bhagavathula N, Kelley EA, Reddy M, et al (2005). Upregulation of calcium-sensing receptor and mitogen-activated protein kinase signalling in the regulation of growth and differentiation in colon carcinoma. Br J Cancer, 93, 1364-1. https://doi.org/10.1038/sj.bjc.6602852
  11. Birchmeier W (1995). E-cadherin as a tumor (invasion) suppressor gene. Bioessays, 17, 97-9. https://doi.org/10.1002/bies.950170203
  12. Birchmeier W, Behrens J (1994). Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta, 1198, 11-26.
  13. Breitwieser GE (2012). Minireview: The Intimate Link Between Calcium Sensing Receptor Trafficking and Signaling: Implications for Disorders of Calcium Homeostasis. Mol Endocrinol.
  14. Brembeck FH, Rosario M,and Birchmeier W. (2006). Balancing cell adhesion and Wnt signaling, the key role of beta-catenin. Current Opinion in Genetics & Development, 16, 51-9. https://doi.org/10.1016/j.gde.2005.12.007
  15. Brown EM, Gamba G, Riccardi D, et al (1993). Cloning and characterization of an extracellular $Ca(^{2+})$-sensing receptor from bovine parathyroid. Nature, 366, 575-0. https://doi.org/10.1038/366575a0
  16. Brown EM, MacLeod RJ (2001). Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev, 81, 239-97. https://doi.org/10.1152/physrev.2001.81.1.239
  17. Capiod T, Shuba Y, Skryma R, Prevarskaya N (2007). Calcium signalling and cancer cell growth. Sub-cellular biochemistry, 45, 405-27. https://doi.org/10.1007/978-1-4020-6191-2_15
  18. Chakrabarty S, Radjendirane V, Appelman H, Varani J (2003). Extracellular calcium and calcium sensing receptor function in human colon carcinomas: promotion of E-cadherin expression and suppression of beta-catenin/TCF activation. Cancer Res, 63, 67-1.
  19. Chakrabarty S, Wang H, Canaff L, et al (2005). Calcium sensing receptor in human colon carcinoma: interaction with $Ca(^{2+})$ and 1,25-dihydroxyvitamin D(3). Cancer Res, 65, 493-8.
  20. Chakravarti B, Dwivedi SK, Mithal A, Chattopadhyay N (2009). Calcium-sensing receptor in cancer: good cop or bad cop? Endocrine, 35, 271-84. https://doi.org/10.1007/s12020-008-9131-5
  21. Chattopadhyay N (2006). Effects of calcium-sensing receptor on the secretion of parathyroid hormone-related peptide and its impact on humoral hypercalcemia of malignancy. Am J Physiol Endocrinol Metab, 290, 761-0. https://doi.org/10.1152/ajpendo.00350.2005
  22. Chattopadhyay N, Mithal A, Brown EM (1996). The calciumsensing receptor: a window into the physiology and pathophysiology of mineral ion metabolism. Endocr Rev, 17, 289-07.
  23. Chattopadhyay N, Ye C, Singh DP, et al (1997). Expression of extracellular calcium-sensing receptor by human lens epithelial cells. Biochem Biophys Res Commun, 233, 801-5. https://doi.org/10.1006/bbrc.1997.6553
  24. Chattopadhyay N, Ye CP, Yamaguchi T, et al (1998). Extracellular calcium-sensing receptor in rat oligodendrocytes: expression and potential role in regulation of cellular proliferation and an outward K+ channel. Glia, 24, 449-8. https://doi.org/10.1002/(SICI)1098-1136(199812)24:4<449::AID-GLIA10>3.0.CO;2-9
  25. Chattopadhyay N, Ye CP, Yamaguchi T, Vassilev PM, Brown EM (1999). Evidence for extracellular calcium-sensing receptor mediated opening of an outward $K^{+}$ channel in a human astrocytoma cell line (U87). Glia, 26, 64-2. https://doi.org/10.1002/(SICI)1098-1136(199903)26:1<64::AID-GLIA7>3.0.CO;2-X
  26. Cheng I, Klingensmith ME, Chattopadhyay N, et al (1998). Identification and localization of the extracellular calciumsensing receptor in human breast. J Clin Endocrinol Metab, 83, 703-7. https://doi.org/10.1210/jc.83.2.703
  27. Chikatsu N, Fukumoto S, Takeuchi Y, et al (2000). Cloning and characterization of two promoters for the human calciumsensing receptor (CaSR) and changes of CaSR expression in parathyroid adenomas. J Biol Chem, 275, 7553-7. https://doi.org/10.1074/jbc.275.11.7553
  28. Cicek M, Oursler MJ (2006). Breast cancer bone metastasis and current small therapeutics. Cancer Metastasis Rev, 25, 635-4.
  29. Coleman RE (1997). Skeletal complications of malignancy. Cancer, 80, 1588-4. https://doi.org/10.1002/(SICI)1097-0142(19971015)80:8+<1588::AID-CNCR9>3.0.CO;2-G
  30. Cumano A and Godin I (2007). Ontogeny of the hematopoietic system. Annu Rev Immunol, 25, 745-85. https://doi.org/10.1146/annurev.immunol.25.022106.141538
  31. Deschenes C, Vezina A, Beaulieu JF, Rivard N (2001). Role of p27(Kip1) in human intestinal cell differentiation. Gastroenterology, 120, 423-38. https://doi.org/10.1053/gast.2001.21199
  32. Dores MR, Trejo J (2012). Ubiquitination of GPCRs, Functional Implications and Drug Discovery. Mol Pharmacol.
  33. Drueke TB (2006). Haematopoietic stem cells--role of calciumsensing receptor in bone marrow homing. Nephrol Dial Transplant, 21, 2072-4. https://doi.org/10.1093/ndt/gfl206
  34. Dvorak-Ewell MM, Chen TH, Liang N, et al (2011). Osteoblast extracellular $Ca^{2+}$ -sensing receptor regulates bone development, mineralization, and turnover. J Bone Miner Res, 26, 2935-47. https://doi.org/10.1002/jbmr.520
  35. Eaton CL, Coleman RE (2003). Pathophysiology of bone metastases from prostate cancer and the role of bisphosphonates in treatment. Cancer Treatment Reviews, 29, 189-8. https://doi.org/10.1016/S0305-7372(03)00071-9
  36. Fagotto F, Funayama N, Gluck U, Gumbiner BM (1996). Binding to cadherins antagonizes the signaling activity of beta-catenin during axis formation in Xenopus. J Cell Biol, 132, 1105-4. https://doi.org/10.1083/jcb.132.6.1105
  37. Fukumoto S (1998). [Localization and function of calciumsensing mechanism in bone cells]. Nihon Rinsho, 56, 1419-4.
  38. Garland C, Shekelle RB, Barrett-Connor E, et al (1985). Dietary vitamin D and calcium and risk of colorectal cancer: a 19-year prospective study in men. Lancet, 1, 307-9.
  39. Garrett JE, Capuano IV, Hammerland LG, et al (1995). Molecular cloning and functional expression of human parathyroid calcium receptor cDNAs. J Biol Chem, 270, 12919-5. https://doi.org/10.1074/jbc.270.21.12919
  40. George GP, Ramesh V, Mittal RD (2011). Impact of total and ionized serum calcium on prostate cancer risk in North Indian men. Asian Pac J Cancer Prev, 12, 1257-0.
  41. Greenlee RT, Hill-Harmon MB, Murray T, Thun M (2001). Cancer statistics, 2001. CA: A Cancer J Clinicians, 51, 15-36. https://doi.org/10.3322/canjclin.51.1.15
  42. Grill V, Ho P, Body JJ, et al (1991). Parathyroid hormone-related protein: elevated levels in both humoral hypercalcemia of malignancy and hypercalcemia complicating metastatic breast cancer. J Clin Endocrinol Metab, 73, 1309-5. https://doi.org/10.1210/jcem-73-6-1309
  43. Gschwind A, Zwick E, Prenzel N, Leserer M, Ullrich A (2001). Cell communication networks: epidermal growth factor receptor transactivation as the paradigm for interreceptor signal transmission. Oncogene, 20, 1594-0. https://doi.org/10.1038/sj.onc.1204192
  44. Haylock DN, Nilsson SK (2006). Osteopontin: a bridge between bone and blood. Br J Haematol, 134, 467-4. https://doi.org/10.1111/j.1365-2141.2006.06218.x
  45. Hennings H, Holbrook K, Steinert P, Yuspa S (1980a). Growth and differentiation of mouse epidermal cells in culture: effects of extracellular calcium. Curr Probl Dermatol, 10, 3-25.
  46. Hennings H, Michael D, Cheng C, et al (1980b). Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell, 19, 245-4. https://doi.org/10.1016/0092-8674(80)90406-7
  47. Hofer AM, Brown EM (2003). Extracellular calcium sensing and signalling. Nat Rev Mol Cell Biol, 4, 530-8. https://doi.org/10.1038/nrm1154
  48. Holmbeck K, Bianco P, Chrysovergis K, Yamada S, Birkedal- Hansen H (2003). MT1-MMP-dependent, apoptotic remodeling of unmineralized cartilage: a critical process in skeletal growth. J Cell Biol, 163, 661-1. https://doi.org/10.1083/jcb.200307061
  49. House MG, Kohlmeier L, Chattopadhyay N, et al (1997). Expression of an extracellular calcium-sensing receptor in human and mouse bone marrow cells. J Bone Miner Res, 12, 1959-70. https://doi.org/10.1359/jbmr.1997.12.12.1959
  50. Imanishi Y, Nagata Y, Inaba M (2012). Parathyroid Diseases and Animal Models. Frontiers in Endocrinology, 3, 78.
  51. Imbriaco M, Larson SM, Yeung HW, et al (1998). A new parameter for measuring metastatic bone involvement by prostate cancer: the Bone Scan Index. Clin Cancer Res, 4, 1765-2.
  52. Kampman E, Slattery ML, Caan B, Potter JD (2000). Calcium, vitamin D, sunshine exposure, dairy products and colon cancer risk (United States). CCC , 11, 459-6.
  53. Kingsley LA, Fournier PG, Chirgwin JM, Guise TA (2007). Molecular biology of bone metastasis. Mol Cancer Ther, 6, 2609-7. https://doi.org/10.1158/1535-7163.MCT-07-0234
  54. Koeneman KS, Yeung F, Chung LW (1999). Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate, 39, 246-61. https://doi.org/10.1002/(SICI)1097-0045(19990601)39:4<246::AID-PROS5>3.0.CO;2-U
  55. Kuroda S, Fukata M, Nakagawa M, et al (1998). Role of IQGAP1, a target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherin- mediated cell-cell adhesion. Science, 281, 832-5. https://doi.org/10.1126/science.281.5378.832
  56. Lala PK, Chakraborty C (2001). Role of nitric oxide in carcinogenesis and tumour progression. The lancet oncol, 2, 149-6. https://doi.org/10.1016/S1470-2045(00)00256-4
  57. Lamprecht SA, Lipkin M (2003). Chemoprevention of colon cancer by calcium, vitamin D and folate: molecular mechanisms. Nat Rev Cancer, 3, 601-14. https://doi.org/10.1038/nrc1144
  58. Le Gall C, Bellahcene A, Bonnelye E, et al (2007). A cathepsin K inhibitor reduces breast cancer induced osteolysis and skeletal tumor burden. Cancer Res, 67, 9894-2. https://doi.org/10.1158/0008-5472.CAN-06-3940
  59. Liao J, Schneider A, Datta NS, McCauley LK (2006). Extracellular calcium as a candidate mediator of prostate cancer skeletal metastasis. Cancer Res, 66, 9065-3. https://doi.org/10.1158/0008-5472.CAN-06-0317
  60. Lipkin M (1999). Preclinical and early human studies of calcium and colon cancer prevention. Ann N Y Acad Sci, 889, 120-7. https://doi.org/10.1111/j.1749-6632.1999.tb08729.x
  61. Liu J, Lv F, Sun W, et al (2011). The abnormal phenotypes of cartilage and bone in calcium-sensing receptor deficient mice are dependent on the actions of calcium, phosphorus, and PTH. PLoS Genet, 7, 1002294.
  62. Mamillapalli R, VanHouten J, Zawalich W, Wysolmerski J (2008). Switching of G-protein usage by the calcium-sensing receptor reverses its effect on parathyroid hormone-related protein secretion in normal versus malignant breast cells. J Biol Chem, 283, 24435-47. https://doi.org/10.1074/jbc.M801738200
  63. McNeil SE, Hobson SA, Nipper V, Rodland KD (1998). Functional calcium-sensing receptors in rat fibroblasts are required for activation of SRC kinase and mitogen-activated protein kinase in response to extracellular calcium. J Biol Chem, 273, 1114-0. https://doi.org/10.1074/jbc.273.2.1114
  64. Moon RT, Brown JD, Yang-Snyder JA, Miller JR (1997). Structurally related receptors and antagonists compete for secreted Wnt ligands. Cell, 88, 725-8. https://doi.org/10.1016/S0092-8674(00)81915-7
  65. Morin PJ (1999). beta-catenin signaling and cancer. Bioessays, 21, 1021-0. https://doi.org/10.1002/(SICI)1521-1878(199912)22:1<1021::AID-BIES6>3.0.CO;2-P
  66. Morony S, Capparelli C, Sarosi I, et al (2001). Osteoprotegerin inhibits osteolysis and decreases skeletal tumor burden in syngeneic and nude mouse models of experimental bone metastasis. Cancer Res, 61, 4432-6.
  67. Motokura T, Bloom T, Kim HG, et al (1991). A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature, 350, 512-5. https://doi.org/10.1038/350512a0
  68. Neudert M, Fischer C, Krempien B, et al (2003). Site-specific human breast cancer (MDA-MB-231) metastases in nude rats: model characterisation and in vivo effects of ibandronate on tumour growth. Int J Cancer, 107, 468-7. https://doi.org/10.1002/ijc.11397
  69. Nilsson SK, Johnston HM, Coverdale JA (2001). Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood, 97, 2293-9. https://doi.org/10.1182/blood.V97.8.2293
  70. Nilsson SK, Johnston HM, Whitty GA, et al (2005). Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood, 106, 1232-9. https://doi.org/10.1182/blood-2004-11-4422
  71. Oka H, Shiozaki H, Kobayashi K, et al (1993). Expression of E-cadherin cell adhesion molecules in human breast cancer tissues and its relationship to metastasis. Cancer Res, 53, 1696-1.
  72. Parkinson IH, Fazzalari NL (2003). Interrelationships between structural parameters of cancellous bone reveal accelerated structural change at low bone volume. J Bone Miner Res, 18, 2200-5. https://doi.org/10.1359/jbmr.2003.18.12.2200
  73. Pignatelli M, Ansari TW, Gunter P, et al (1994). Loss of membranous E-cadherin expression in pancreatic cancer: correlation with lymph node metastasis, high grade, and advanced stage. J Pathol, 174, 243-8. https://doi.org/10.1002/path.1711740403
  74. Pin JP, Galvez T, Prezeau L (2003). Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol Ther, 98, 325-54. https://doi.org/10.1016/S0163-7258(03)00038-X
  75. Polyak K, Hamilton SR, Vogelstein B, Kinzler KW. (1996). Early alteration of cell-cycle-regulated gene expression in colorectal neoplasia. Am J Pathol, 149, 381-7.
  76. Prenzel N, Zwick E, Daub H, et al (1999). EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature, 402, 884-8. https://doi.org/10.1038/47260
  77. Quaroni A, Tian JQ, Seth P, Ap Rhys C (2000). p27(Kip1) is an inducer of intestinal epithelial cell differentiation. Am J Physiol Cell Physiol, 279, 1045-57.
  78. Ray JM, Squires PE, Curtis SB, Meloche MR, Buchan AM. (1997). Expression of the calcium-sensing receptor on human antral gastrin cells in culture. J Clin Invest, 99, 2328-3. https://doi.org/10.1172/JCI119413
  79. Ray K, Hauschild BC, Steinbach PJ, et al (1999). Identification of the cysteine residues in the amino-terminal extracellular domain of the human $Ca(^{2+})$ receptor critical for dimerization. Implications for function of monomeric $Ca(^{2+})$ receptor. J Biol Chem, 274, 27642-0. https://doi.org/10.1074/jbc.274.39.27642
  80. Rey O, Chang W, Bikle D, et al (2012). Negative cross-talk between calcium-sensing receptor and beta-catenin signaling systems in colonic epithelium. J Biol Chem, 287, 1158-7. https://doi.org/10.1074/jbc.M111.274589
  81. Rodland KD (2004). The role of the calcium-sensing receptor in cancer. Cell Calcium, 35, 291-5. https://doi.org/10.1016/j.ceca.2003.10.011
  82. Roodman GD (2001). Biology of osteoclast activation in cancer. J Clin Oncol, 19, 3562-1. https://doi.org/10.1200/JCO.2001.19.15.3562
  83. Roodman GD (2004). Mechanisms of bone metastasis. N Engl J Med, 350, 1655-4. https://doi.org/10.1056/NEJMra030831
  84. Rozengurt, E (2007). Mitogenic signaling pathways induced by G protein-coupled receptors. J Cell Physiol, 213, 589-602. https://doi.org/10.1002/jcp.21246
  85. Ruat M, Molliver ME, Snowman AM, Snyder SH (1995). Calcium sensing receptor: molecular cloning in rat and localization to nerve terminals. Proc Natl Acad Sci U S A, 92, 3161-5. https://doi.org/10.1073/pnas.92.8.3161
  86. Saidak Z, Mentaverri R, Brown EM (2009). The role of the calcium-sensing receptor in the development and progression of cancer. Endocr Rev, 30, 178-5. https://doi.org/10.1210/er.2008-0041
  87. Sanders JL, Chattopadhyay N, Kifor O, Yamaguchi T, Brown EM (2001). $Ca(^{2+})$-sensing receptor expression and PTHrP secretion in PC-3 human prostate cancer cells. Am J Physiol Endocrinol Metab, 281, 1267-4. https://doi.org/10.1152/ajpendo.2001.281.6.E1267
  88. Sanders JL, Chattopadhyay N, Kifor O, et al (2000). Extracellular calcium-sensing receptor expression and its potential role in regulating parathyroid hormone-related peptide secretion in human breast cancer cell lines. Endocrinology, 141, 4357-4. https://doi.org/10.1210/en.141.12.4357
  89. Saxena H, Deshpande DA, Tiegs BC, et al (2012). The GPCR OGR1 (GPR68) mediates diverse signalling and contraction of airway smooth muscle in response to small reductions in extracellular pH. Br J Pharmacol, 166, 981-0. https://doi.org/10.1111/j.1476-5381.2011.01807.x
  90. Schneider A, Kalikin LM, Mattos AC, et al (2005). Bone turnover mediates preferential localization of prostate cancer in the skeleton. Endocrinology, 146, 1727-6. https://doi.org/10.1210/en.2004-1211
  91. Sellers TA, Bazyk AE, Bostick RM, et al (1998). Diet and risk of colon cancer in a large prospective study of older women: an analysis stratified on family history (Iowa, United States). CCC, 9, 357-7.
  92. Squires PE, Harris TE, Persaud SJ, et al (2000). The extracellular calcium-sensing receptor on human beta-cells negatively modulates insulin secretion. Diabetes, 49, 409-7. https://doi.org/10.2337/diabetes.49.3.409
  93. Sun YX, Schneider A, Jung Y, et al (2005). Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Miner Res, 20, 318-9.
  94. Tetsu O, McCormick F (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature, 398, 422-6. https://doi.org/10.1038/18884
  95. Tfelt-Hansen J, Schwarz P, Terwilliger EF, et al (2003). Calciumsensing receptor induces messenger ribonucleic acid of human securin, pituitary tumor transforming gene, in rat testicular cancer. Endocrinology, 144, 5188-3. https://doi.org/10.1210/en.2003-0520
  96. Tharmalingam S, Daulat AM, Antflick JE, et al (2011). Calciumsensing receptor modulates cell adhesion and migration via integrins. J Biol Chem, 286, 40922-33. https://doi.org/10.1074/jbc.M111.265454
  97. Theman TA, Collins MT (2009). The role of the calcium-sensing receptor in bone biology and pathophysiology. Curr Pharm Biotechnol, 10, 289-01. https://doi.org/10.2174/138920109787847538
  98. Thomsen LL, Miles DW (1998). Role of nitric oxide in tumour progression: lessons from human tumours. Cancer Metastasis Rev, 17, 107-18. https://doi.org/10.1023/A:1005912906436
  99. VanHouten J, Dann P, McGeoch G, et al (2004). The calciumsensing receptor regulates mammary gland parathyroid hormone-related protein production and calcium transport. J Clin Invest, 113, 598-8. https://doi.org/10.1172/JCI200418776
  100. Ward DT, Riccardi D (2012). New concepts in calcium-sensing receptor pharmacology and signalling. Br J Pharmacol, 165, 35-48. https://doi.org/10.1111/j.1476-5381.2011.01511.x
  101. Wargovich MJ, Jimenez A, McKee K, et al (2000). Efficacy of potential chemopreventive agents on rat colon aberrant crypt formation and progression. Carcinogenesis, 21, 1149-5. https://doi.org/10.1093/carcin/21.6.1149
  102. Wong NA, Pignatelli M (2002). Beta-catenin--a linchpin in colorectal carcinogenesis? Am J Pathol, 160, 389-1. https://doi.org/10.1016/S0002-9440(10)64856-0
  103. Wu K, Willett WC, Fuchs CS, et al (2002). Calcium intake and risk of colon cancer in women and men. J Natl Cancer Inst, 94, 437-6. https://doi.org/10.1093/jnci/94.6.437
  104. Yano S, Macleod RJ, Chattopadhyay N, et al (2004). Calciumsensing receptor activation stimulates parathyroid hormonerelated protein secretion in prostate cancer cells: role of epidermal growth factor receptor transactivation. Bone, 35, 664-2. https://doi.org/10.1016/j.bone.2004.04.014
  105. Yin JJ, Pollock CB, Kelly K (2005). Mechanisms of cancer metastasis to the bone. Cell Res, 15, 57-62. https://doi.org/10.1038/sj.cr.7290266
  106. Yin JJ, Selander K, Chirgwin JM, et al (1999). TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest, 103, 197-6. https://doi.org/10.1172/JCI3523
  107. Zheng Y, Zhou H, Modzelewski JR, et al (2007). Accelerated bone resorption, due to dietary calcium deficiency, promotes breast cancer tumor growth in bone. Cancer Res, 67, 9542-8. https://doi.org/10.1158/0008-5472.CAN-07-1046

Cited by

  1. Parathyroid Hormone Gene rs6256 and Calcium Sensing Receptor Gene rs1801725 Variants are not Associated with Susceptibility to Colorectal Cancer in Iran vol.15, pp.15, 2014, https://doi.org/10.7314/APJCP.2014.15.15.6035
  2. Expression of calcium sensing receptor and E-cadherin correlated with survival of lung adenocarcinoma vol.6, pp.6, 2015, https://doi.org/10.1111/1759-7714.12255
  3. Voltage-gated calcium channels: Novel targets for cancer therapy vol.14, pp.2, 2017, https://doi.org/10.3892/ol.2017.6457
  4. The suppressive role of calcium sensing receptor in endometrial cancer vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-19286-1