Comparison of Temperature-dependent Development Model of Aphis gossypii (Hemiptera: Aphididae) under Constant Temperature and Fluctuating Temperature

실내 항온과 온실 변온조건에서 목화진딧물의 온도 발육비교

  • Kim, Do-Ik (Jeollanamdo Agricultural Research & Extension Services) ;
  • Ko, Suk-Ju (Jeollanamdo Agricultural Research & Extension Services) ;
  • Choi, Duck-Soo (Jeollanamdo Agricultural Research & Extension Services) ;
  • Kang, Beom-Ryong (Jeollanamdo Agricultural Research & Extension Services) ;
  • Park, Chang-Gyu (Crop Protection Division, Department of Agricultural biology, National Academy of Agricultural Science) ;
  • Kim, Seon-Gon (Jeollanamdo Agricultural Research & Extension Services) ;
  • Park, Jong-Dae (Jeollanamdo Agricultural Research & Extension Services) ;
  • Kim, Sang-Soo (Division of Horticulture and Plant Medicine, Sunchon National University)
  • 김도익 (전남농업기술원 연구개발국) ;
  • 고숙주 (전남농업기술원 연구개발국) ;
  • 최덕수 (전남농업기술원 연구개발국) ;
  • 강범용 (전남농업기술원 연구개발국) ;
  • 박창규 (국립농업과학원 농업생물부) ;
  • 김선곤 (전남농업기술원 연구개발국) ;
  • 박종대 (전남농업기술원 연구개발국) ;
  • 김상수 (순천대학교 원예생물의학부)
  • Received : 2012.04.19
  • Accepted : 2012.11.13
  • Published : 2012.12.01


The developmental time period of Aphis gossypii was studied in laboratory (six constant temperatures from 15 to $30^{\circ}C$ with 50~60% RH, and a photoperiod of 14L:10D) and in a cucumber plastic house. The mortality of A. gossypii in the laboratory was high in the 2nd (20.0%) and 3rd stage(13.3%) at low temperature but high in the 3rd (26.7%) and 4th stage (33.3%) at high temperatures. Mortality in the plastic house was high in the 1st and 2nd stage but there was no mortality in the 4th stage at low temperature. The total developmental period was longest at $15^{\circ}C$ (12.2 days) in the laboratory and shortest at $28.5^{\circ}C$ (4.09 days) in the plastic house. The lower threshold temperature at the total nymphal stage was $6.8^{\circ}C$ in laboratory. The thermal constant required to reach the total nymphal stage was 111.1DD. The relationship between the developmental rate and temperature fit the nonlinear model of Logan-6 which has the lowest value for the Akaike information criterion(AIC) and Bayesian information criterion(BIC). The distribution of completion of each development stage was well described by the 3-parameter Weibull function ($r^2=0.89{\sim}0.96$). This model accurately described the predicted and observed outcomes. Thus it is considered that the model can be used for predicting the optimal spray time for Aphis gossypii.


Grant : 진딧물 개체군 동태 모델 및 방제 의사결정 체계 개발

Supported by : 농촌진흥청


  1. Akey, D.H., Butler Jr. G.D., 1989. Developmental rates and fecundity of apterous Aphis gossypii on seedlings of Gossypium hirsutum. Southwestern Entomol. 14, 295-299.
  2. Ali Niazee, M.T., 1976. Thermal unit requirements for determining adult emergence of the western cherry fruit fly in the Willamatte Valley of oregon. Environ. Entomol. 5, 397-401.
  3. Briere, J.F., Pracros, P., 1998. Comparison of temperature-dependent growth models with the development of Lobesia botrana (Lepidoptera : Tortricidae). Environ. Entomol. 27, 94-101.
  4. Briere, J.F., Pracros, P., Le Roux, A.Y., Pierre, J.S., 1999. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28, 22-29.
  5. Burnham, K.P., Anderson, D.R., 2004. Multimodel inference : understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261-304.
  6. Butts RA., McEwen FL., 1981. Seasonal populations of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), in relation to day-degree accumulation. Canadian Entomol. 113, 127-131.
  7. Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., Markauer, M., 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11, 431-438.
  8. Capinera, J.L., 2000. aphid. htm.
  9. Choe, Y.S., Park, D.G., Han, H.K., Choe, K.R., 2006. Temperature -dependent development of Aphis gossypii Glover and Aphis egomae Shinji on leaves of green perilla and their seasonal abundance patterns in protected greenhouse in Geumsan, Korea. Kor. J. Appl. Entomol. 45, 260-274.
  10. Chon, T.S., Hyun, J.S., Park,C.S., 1975. A study on the population dynamics of overwintered small brown plat hopper, Laodelphax striatellus (Fallen). Kor. J. Entomol. 5, 21-23.
  11. Eckennode, C.K., Chapman, R.K., 1972. Seasonal adult cabbage maggot populations in the field in relation to thermal unit accumulations. Ann. Entomol. Soc. Am. 65, 151-156.
  12. Han, M.W., Lee, J.H., Lee, M.H., 1993. Effects of temperature on development of oriental tobacco budworm, Helioverpa assulta Guenee. Kor. J. Appl. Entomol. 32, 236-244.
  13. Howe, R.W., 1967. Temperature effects on embryonic development in insects. Annu. Rev. Entomol. 10, 15-42
  14. Isely, D., 1946. The cotton aphid. Ark. Agric. Expt. Sta. Bull. No. 462.
  15. Kerns,D.L., Stewart, S.D., 2000. Sublethal effects of insecticides on the intrinsic rate of increase of cotton aphid. Entomologia Experimentalis et Applicata. 94, 41-49.
  16. Kerstings, U., Satar, S., Uygun, N., 1999. Effect of temperature on development rate and fecundity of apterous Aphis gosspii Glover (Hom., Aphididae) reared on Gossypium hirsutum L. J. Appl. Ent. 123, 23-27.
  17. Kim, D.S., Lee, J.H., 2003. Oviposition model of Carposina sasakii (Lepidoptera : Carposinidae). Ecol. model. 162, 145-153.
  18. Kim, D.S., Lee, J.H. Yiem, M.S., 2001. Temperature-dependent development of Carposina sasakii (Lepidoptera : Carposinidae) and its emergence models. Environ. Entomol. 30, 298-305.
  19. Kim, J.S., Kim, Y.H., Kim, T.H., Kim, J.H., Byeon, Y.W., Kim, K.H., 2004. Temperature-dependent development and its model of the melon aphid, Aphis gossypii Glover (Homoptera: Aphididae). Kor. J. Appl. Entomol. 43, 111-116.
  20. King, E.G., Phillips, J.R., 1989. The 42nd annual conference report on cotton insect research and control. In: Proc. Beltwide Cotton Production Research Conference, Memphis, Tennessee, USA. pp. 180-191.
  21. Komazaki, S., 1982, Effects of constant temperature on population growth of three aphid species, Toxoptera citricidus (Kirsaldy), Aphis citricola van der Goot and Aphis gossypii Glover (Homoptera: Aphididae) on citrus. Appl. Entomol. Zool. 17, 75-81.
  22. Lactin, D.J., Holliday, N.J., Johnson, D.I., Craigen, R., 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24, 68-75.
  23. Leclant, F., Deguine, J.P., 1994. Aphids (Hemiptera: Aphididae). In: Matthew, G.A., Tunstal, J.P. (eds.), Insect pests of cotton. Wallingford UK vab international. pp. 285-323.
  24. Lee, Y.H., 2010. Simulation study on model selection based on AIC under unbalanced design in linear mixed effect models. Kor. J. A. Stat. 23, 1169-1178.
  25. Liu, Y.C., Kuo, M.H., Yang, S.C., 2000. The development, fecundity and life table of Aphis gossypii Glover on lily. Plant Prot. Bull. 42, 1-10.
  26. Logan, J.A., Wolkind, D.J., Hoyt, S.C., Tanigoshi, L.K., 1976. An analytical model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5, 1113-1140.
  27. Paik, W.H., 1972. Illustrated Flora and Fauna of Korea Vol. 13 (Insecta V). Ministry of Education. pp. 751.
  28. Park, C.G., Park, H.H., Uhm, K.B., Lee, J.H., 2010a. Temperaturedependent development model of Paromius exiguus (Distant) (Heteroptera: Lygaeidae). Kor. J. Appl. Entomol. 49, 305-312.
  29. Park, C.G., Park, H.H., Kim, K.H., 2011. Temperature-dependent development model and forecasting of adult emergence of overwintered small brown planthopper, Laodelphax striatellus Fallen, population. Kor. J. Appl. Entomol. 50, 343-352.
  30. Park, C.G., Kim, H.Y., Lee, J.H., 2010b. Parameter estimation for a temperature-dependent development model of Thrips palmi Karny (Thysanoptera: Thripidae). J. Asia Pac. Entomol. 13, 145-149.
  31. Raftery, A.E., 1995. Bayesian model selection in social research. Sociol. Methodol. 25, 111-163.
  32. Schoolfield, R.M., Sharpe, P.J.H., Mugnuson, C.E., 1981. Nonlinear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 66, 21-38.
  33. Scopes, N.E.A., Biggerstaff, S.B., 1977. The use of a temperature integrator predict the developmental period of the parasite Aphidius matricariae. J. Appl. Ecol. 14, 799-802
  34. Shi, P., Ge, F., 2010. A comparison of different thermal performance functions describing temperature-dependent development rates. J. Thermal Biol. 35, 225-231.
  35. Shim, J.Y., Park, J.S., Paik, W.H., 1979. Studies on the life history of cotton aphid, Aphid gossypii Glover (Homoptera). Kor. J. Pl. Prot. 18, 85-88.
  36. Slosser, J.E., Pinchak, W.E., Rummel, D.E., 1989. A review on known and potential factors affecting the population dynamics of the cotton aphid. Southwestern Entomol. 14, 302-313.
  37. Systat software inc. 2002. TableCurve 2D Automated curve fitting analysis: Ver. 5.01. Systat software. inc. San jose. CA.
  38. Wagner, T.L., Wu, H., Sharpe, P.J.H., Coulson, R.N., 1984a. Modeling distribution of insect development time: A literature review and application of Weibull function. Ann. Entomol. Soc. Am. 77, 475-487.
  39. Wagner, T.L., Wu, H., Sharpe, P.J.H. Schoolfield, R.M., Coulson, R.N., 1984b. Modeling insect development rate: A literature review and application of a biophysical model. Ann. Entomol. Soc. Am. 77, 208-225.

Cited by

  1. Research Status and Future Subjects to Predict Pest Occurrences in Agricultural Ecosystems Under Climate Change vol.16, pp.4, 2014,
  2. Effects of temperature and photoperiod on the production of sexual morphs of Aphis gossypii (Hemiptera: Aphididae) in Jeju, Korea vol.20, pp.1, 2017,