Characteristics of Aerosol Particle Concentration by the Versatile Aerosol Concentration Enrichment System (VACES)

VACES을 이용한 대기 중 입자상물질의 농축기술 및 특성 연구

  • Park, Jeong-Ho (Department of Environmental Engineering, Gyeongnam National University of Science and Technology)
  • 박정호 (경남과학기술대학교 환경공학과)
  • Received : 2012.08.15
  • Accepted : 2012.09.13
  • Published : 2012.11.30


The versatile aerosol concentration enrichment system (VACES) have proven useful for providing elevated levels of atmospheric aerosol to human and animal exposures. In this study, we describe a VACES and tests conducted to both optimize the enhancement factor (EF) and characterize how it depends on experiment conditions. Particle number concentrations were measured from upstream and downstream of the system by scanning mobility particle sizer (SMPS) with a long differential mobility analyzer (DMA) in combination with a condensation particle counter (CPC). SMPS was used for to determine VACES particle EF. Particle EF tends to increase for higher the saturator temperature ($T_{Sat}$) and lower the condenser temperature ($T_{Con}$). $T_{Con}$ higher than $0^{\circ}C$ and $T_{Sat}$ lower than $50^{\circ}C$ was the best to obtain the most increase in particle concentration. Correlation analysis of EF with factor variables of $T_{Sat}$ and $T_{Con}$ resulted in correlation 0.662 and 0.416, respectively. With all five predictor variables included in a multiple regression model, the EF had a liner correlation with $R^2=0.643$.


Supported by : 경남과학기술대학교


  1. Kim, M. C., Lee, G. W., 1997, Experimental Study of Virtual Impactors for Aerosol Concentration, Proceeding of the Meeting of KOSAE 1997, 138-140.
  2. Park, J. H., Suh, J. M., 2005, Physico-chemical characterization of individual particles emitted from the air pollution point sources, Journal of the Environmental Sciences, 14(8), 761-770.
  3. Baron, P. A., Willeke, K., 2001, Aerosol measurement : Principles, Technology, and Applications, 2nd ed. New York: John Wiley & Sons Inc..
  4. Barr, E. B., Hoover, M. D., Kanapilly, G. M., Yeh, H. C., Rothenberg, S. J., 1983, Aerosol concentrator- Design, Construction, Calibration, and Use, Aerosol Sci Technol, 2, 437-442.
  5. Dick, C. A. J., Stone, V., Brown, D. M., Watt, M., Cherrie, J. W., Howarth, S., Seaton, A., Donaldsona, K.. 2000, Toxic and inflammatory effects of filters frequently used for the collection of airborne particulate matter, Atmospheric Environment, 34(16), 2587-2592.
  6. Donaldson, K., Li, X. Y,, MacNee, W., 1998, Ultrafine (nanometre) particle mediated lung injury, J. Aerosol Sci., 29(5/6), 553-560.
  7. Fuchs, N. A., 1975, Sampling of aerosols, Atmospheric Environment, 9, 696-707.
  8. Geller, M. D., Biswas, S., Fine, P. M., Sioutas, C., 2005, A new compact aerosol concentrator for use in conjunction with low flow-rate continuous aerosol instrumentation, J. Aerosol Sci., 36, 1006-1022.
  9. Hinds, W., 1998, Aerosol Technology : Properties, Behavior, and Measurement of airborne particles, New York: John Wiley & Sons Inc..
  10. Jung, H., Arellanes, C., Zhao, Y., Paulson, S., Anastasio, C., Wexler, A., 2010, Impact of the versatile aerosol concentration enrichment system (VACES) on gas phase species. Aerosol Science and Technology, 44, 1113-1121
  11. Kim, S., Jaques, P. A., Chang, M., Barone, T., Xiong, C., Friedlander, S. K., Sioutas, C., 2001, Versatile Aerosol concentration enrichment system (VACES) for simultaneous in vivo and in vitro evaluation of toxic effects of ultrafine, fine and coarse ambient particles. Part II: Development and Laboratory Characterization, J. Aerosol Sci., 32, 1299-1314.
  12. Pakbin, P., Ning, Z., Eiguren-Fernandez, A., Sioutas, C., 2011, Modification of the versatile aerosol concentration enrichment system(VACES) for conducting inhalation exposures to semi-volatile vapor phase pollutants, J. Aerosol Sci., 42, 555-566.
  13. Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., Thurston G. D., 2002, Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, J. Am. Med. Assoc., 287(9), 1132-1141.
  14. Seinfeld, J. H., Pandis, S. N., 1998, Atmospheric chemistry and Physics, New York: John Wiley & Sons Inc..
  15. Schulz, H., Harder, V., Ibald-Mulli, A., Khandoga, A., Koenig, W., Krombach, F., Radykewicz, R., Stampfl, A., Thorand, B., Peters, A., 2005, Cardiovascular effects of fine and ultrafine particles, Journal of aerosol medicine, 18(1), 1-22.
  16. Thurston, G. D., Ito, K., Hayes, C. G., Bates, D. V., Lippmann, M., 1994, Respiratory hospital admissions and summertime haze air-pollution in Toronto, Ontario-Consideration of role of acid aerosols, Environ. Res., 65, 271-290.
  17. Weiden, S. L., Drewnick, F., Borrmann, S., 2009, Particle loss calculator - a new software tool for the assessment of the performance of aerosol inlet systems, Atmos. Meas. Tech., 2, 479-494.
  18. Whitby, K. T., 1978, The physical characteristics of sulfur aerosol, Atmospheric Environment, 12, 135-159.
  19. Zhao, Y., Bein, K. J., Wexler, A. S., Misra, C., 2005, Fine PM, Sioutas C. Field evaluation of the versatile aerosol concentration enrichment system (VACES) particle concentrator coupled to the rapid single-particle mass spectrometer (RSMS-3), J. Geophys. Res.-Atmospheres, 110, DO7SO2:1-11.