A Bayesian Extreme Value Analysis of KOSPI Data

코스피 지수 자료의 베이지안 극단값 분석

  • Received : 20110900
  • Accepted : 20111000
  • Published : 2011.10.31


This paper conducts a statistical analysis of extreme values for both daily log-returns and daily negative log-returns, which are computed using a collection of KOSPI data from January 3, 1998 to August 31, 2011. The Poisson-GPD model is used as a statistical analysis model for extreme values and the maximum likelihood method is applied for the estimation of parameters and extreme quantiles. To the Poisson-GPD model is also added the Bayesian method that assumes the usual noninformative prior distribution for the parameters, where the Markov chain Monte Carlo method is applied for the estimation of parameters and extreme quantiles. According to this analysis, both the maximum likelihood method and the Bayesian method form the same conclusion that the distribution of the log-returns has a shorter right tail than the normal distribution, but that the distribution of the negative log-returns has a heavier right tail than the normal distribution. An advantage of using the Bayesian method in extreme value analysis is that there is nothing to worry about the classical asymptotic properties of the maximum likelihood estimators even when the regularity conditions are not satisfied, and that in prediction it is effective to reflect the uncertainties from both the parameters and a future observation.

본 논문에서는 1998.01.03부터 2011.08.31까지 수집된 코스피 지수 자료로부터 계산된 일별 로그수익률과 일별 로그손실률에 대한 극단값 통계분석을 수행하였다. 사용된 극단값 통계분석 모형은 포아송-GPD 모형이고 모수의 추정과 극단분위수의 추정은 최대가능도 방법을 적용하였다. 본 논문에서는 또한 포아송-GPD 모형에 추가적으로 모수의 무정보사전분포를 가정한 베이지안 방법을 고려하였다. 여기서는 마르코프 연쇄 몬테칼로 방법을 적용하여 모수와 극단분위수를 추정하였다. 분석 결과 최대가능도 방법과 베이지안 방법에서 모두, 로그수익률 분포의 오른쪽 꼬리는 정규분포보다 짧은 반면, 로그손실률 분포의 오른쪽 꼬리는 정규분포보다 두텁다는 결론이 얻어졌다. 극단값 분석에서 베이지안 방법을 사용할 때의 장점은 정칙조건이 만족되지 않는 경우에도 최대가능도추정량의 전통적 점근 성질을 걱정할 필요가 없고 예측의 경우에는 모수의 불확실성과 미래 관측치의 불확실성이 모두 반영되는 효과가 있다는 것이다.



  1. 윤석훈 (2009). 원/달러 환율 투자 손실률에 대한 극단분위수 추정, <한국통계학회논문집>, 16, 803-812.
  2. 윤석훈 (2010). 국제현물원유가의 일일 상승 및 하락률의 극단값 분석, <응용통계연구>, 23, 835-844.
  3. Albert, J. (2009). Bayesian Computation with R, 2nd ed., Springer, New York.
  4. Coles, S. G. and Powell, E. A. (1996). Bayesian methods in extreme value modelling: A review and new developments, International Statistical Review, 64, 119-136.
  5. Davison, A. C. and Smith, R. L. (1990). Models for exceedances over high thresholds (with discussion), Journal of the Royal Statistical Society, Series B, 52, 393-442.
  6. Fisher, R. A. and Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample, Proceedings of the Cambridge Philosophical Society, 24, 180-190.
  7. Gnedenko, B. V. (1943). Sur la distribution limite du terme maximum d'une serie aleatoire, Annals of Mathematics, 44, 423-453.
  8. Gumbel, E. J. (1958). Statistics of Extremes, Columbia University Press, New York.
  9. Pickands, J. (1975). Statistical inference using extreme order statistics, Annals of Statistics, 3, 119-131.
  10. Robert, C. and Casella, G. (2004). Monte Carlo Statistical Methods, Springer, New York.
  11. Smith, R. L. (1985). Maximum likelihood estimation in a class of nonregular cases, Biometrika, 72, 67-90.
  12. Smith, R. L. (1989). Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone (with discussion), Statistical Science, 4, 367-393.
  13. von Mises, R. (1936). La distribution de la plus grande de n valeurs. Reprinted in Selected Papers II, American Mathematical Society, Providence, R.I. (1954), 271-294.