DOI QR코드

DOI QR Code

Estimation in an Exponentiated Half Logistic Distribution under Progressively Type-II Censoring

  • Kang, Suk-Bok (Department of Statistics, Yeungnam University) ;
  • Seo, Jung-In (Department of Statistics, Yeungnam University)
  • Received : 20110400
  • Accepted : 20110700
  • Published : 2011.09.30

Abstract

In this paper, we derive the maximum likelihood estimator(MLE) and some approximate maximum likelihood estimators(AMLEs) of the scale parameter in an exponentiated half logistic distribution based on progressively Type-II censored samples. We compare the proposed estimators in the sense of the mean squared error(MSE) through a Monte Carlo simulation for various censoring schemes. We also obtain the AMLEs of the reliability function.

References

  1. Alaboud, F. M. (2009). Bayesian estimations for the extreme value distribution using progressive censored data and asymmetric loss, International Mathematical Forum, 8, 1603-1622.
  2. Arora, S. H., Bhimani, G. C. and Patel, M. N. (2010). Some results on maximum likelihood estimators of parameters of generalized half logistic distribution under Type-I progressive censoring with changing, International Journal of Contemporary Mathematical Sciences, 5, 685-698.
  3. Balakrishnan, N. (1989). Approximate MLE of the scale parameter of the Rayleigh distribution with censoring, IEEE Transactions on Reliability, 38, 355-357. https://doi.org/10.1109/24.44181
  4. Balakrishnan, N. and Kannan, N. (2001). Point and interval estimation for the logistic distribution based on progressively Type-II censored samples, In Handbook of Statistics, Balakrishnan, N. and Rao, C. R., Eds., 20, 431-456.
  5. Balakrishnan, N., Kannan, N., Lin, C. T. and Ng, H. K. T. (2003). Point and interval estimation for Gaussian distribution based on progressively Type-II censored samples, IEEE Transactions on Reliability, 52, 90-95. https://doi.org/10.1109/TR.2002.805786
  6. Balakrishnan, N., Kannan, N., Lin, C. T. and Wu, S. J. S. (2004). Inference for the extreme value distribution under progressively Type-II censoring, Journal of Statistical Computation and Simulation, 74, 25-45. https://doi.org/10.1080/0094965031000105881
  7. Balakrishnan, N. and Puthenpura, N. (1986). Best linear unbiased estimators of location and scale parameters of the half logistic distribution, Journal of Statistics and Computer Simulation, 25, 193-204. https://doi.org/10.1080/00949658608810932
  8. Balakrishnan, N. and Sandhu, R. A. (1995). A simple simulational algorithm for generating progressively Type-II censored samples, The American Statistician, 49, 229-230. https://doi.org/10.2307/2684646
  9. Balakrishnan, N. andWong, K. H. T. (1991). Approximate MLEs for the location and scale parameters of the half-logistic distribution with Type-II right censoring, IEEE Transactions on Reliability, 40, 140-145. https://doi.org/10.1109/24.87114
  10. Han, J. T. and Kang, S. B. (2008). Estimation for the double Rayleigh distribution based on multiply Type-II censored samples, Communications of the Korean Statistical Society, 15, 367-378. https://doi.org/10.5351/CKSS.2008.15.3.367
  11. Kang, S. B., Cho, Y. S. and Han, J. T. (2008). Estimation for the half logistic distribution under progressively Type-II censoring, Communications of the Korean Statistical Society, 15, 815-823. https://doi.org/10.5351/CKSS.2008.15.6.815
  12. Kang, S. B., Cho, Y. S. and Han, J. T. (2009). Estimation for the half logistic distribution based on double hybrid censored samples, Communications of the Korean Statistical Society, 16, 1055-1066. https://doi.org/10.5351/CKSS.2009.16.6.1055
  13. Lee, H. J., Han, J. T. and Kang, S. B. (2008). Estimation for a triangular distribution based on multiply Type-II censored samples, Journal of Korean Data & Information Science Society, 19, 319-330.
  14. Lin, C. T., Wu, S. J. S. and Balakkrishnan, N. (2006). Inference for log- gamma distribution based on progressively Type-II censored data, Communication in Statistics-Theory and Methods, 35, 1271-1292. https://doi.org/10.1080/03610920600692789
  15. Nelson, W. B. (1982). Applied Life Data Analysis, John Willey & Sons, New York.
  16. Seo, E. H. and Kang, S. B. (2007). AMLEs for Rayleigh distribution based on progressively Type-II censored data, The Korean Communications in Statistics, 14, 329-344. https://doi.org/10.5351/CKSS.2007.14.2.329

Cited by

  1. Predictions for Progressively Type-II Censored Failure Times from the Half Triangle Distribution vol.21, pp.1, 2014, https://doi.org/10.5351/CSAM.2014.21.1.093
  2. Estimation for generalized half logistic distribution based on records vol.23, pp.6, 2012, https://doi.org/10.7465/jkdi.2012.23.6.1249
  3. Notes on the exponentiated half logistic distribution vol.39, pp.21, 2015, https://doi.org/10.1016/j.apm.2015.01.039
  4. Parameter and reliability estimation for an exponentiated half-logistic distribution under progressive type II censoring vol.84, pp.8, 2014, https://doi.org/10.1080/00949655.2012.762366
  5. Estimation for Two-Parameter Generalized Exponential Distribution Based on Records vol.20, pp.1, 2013, https://doi.org/10.5351/CSAM.2013.20.1.029
  6. Bayesian analysis of an exponentiated half-logistic distribution under progressively type-II censoring vol.24, pp.6, 2013, https://doi.org/10.7465/jkdi.2013.24.6.1455
  7. Generalized half-logistic Poisson distributions vol.24, pp.4, 2017, https://doi.org/10.5351/CSAM.2017.24.4.353
  8. An Analysis of Record Statistics based on an Exponentiated Gumbel Model vol.20, pp.5, 2013, https://doi.org/10.5351/CSAM.2013.20.5.405