DOI QR코드

DOI QR Code

The Effect of a Sol-gel Formed TiO2 Blocking Layer on the Efficiency of Dye-sensitized Solar Cells

  • Cho, Tae-Yeon (Photovoltaic Research Center, Korea Institute of Energy Research) ;
  • Yoon, Soon-Gil (Department of Material Science and Engineering, Chung-Nam National University) ;
  • Sekhon, S.S. (Department of Physics, Guru Nanak Dev University) ;
  • Kang, Man-Gu (Ionic Device Team, IT-NT Group, Electronics and Telecommunications Research Institute) ;
  • Han, Chi-Hwan (Photovoltaic Research Center, Korea Institute of Energy Research)
  • Received : 2011.06.10
  • Accepted : 2011.08.10
  • Published : 2011.10.20

Abstract

The effect of a dense $TiO_2$ blocking layer prepared using the sol-gel method on the performance of dye-sensitized solar cells was studied. The blocking layer formed directly on the working electrode, separated it from the electrolyte, and prevented the back transfer of electrons from the electrode to the electrolyte. The dyesensitized solar cells were prepared with a working electrode of fluorine-doped tin oxide glass coated with a blocking layer of dense $TiO_2$, a dye-attached mesoporous $TiO_2$ film, and a nano-gel electrolyte, and a counter electrode of Pt-deposited FTO glass. The gel processing conditions and heat treatment temperature for blocking layer formation affected the morphology and performance of the cells, and their optimal values were determined. The introduction of the blocking layer increased the conversion efficiency of the cell by 7.37% for the cell without a blocking layer to 8.55% for the cell with a dense $TiO_2$ blocking layer, under standard illumination conditions. The short-circuit current density ($J_{sc}$) and open-circuit voltage ($V_{oc}$) also were increased by the addition of a dense $TiO_2$ blocking layer.

Keywords

Acknowledgement

Supported by : KETEP

References

  1. O'Regan, B.; Gratzel, M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
  2. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humpbry-Baker, R.; Muller, E.; Liska, P.; Vlachopoulos, N.; Gratzel, M. J. Am. Chem. Soc. 1993, 115, 6382. https://doi.org/10.1021/ja00067a063
  3. Ito, S.; Murakami, T. N.; Comte, P.; Liska, P.; Gratzel, C.; Nazeeruddin, M. K.; Gratzel, M. Thin Solid Films 2008, 516, 4613-4619. https://doi.org/10.1016/j.tsf.2007.05.090
  4. Pelet, S.; Moser, J. E.; Gratzel, M. J. Phys. Chem. B 2000, 104, 1791-1795. https://doi.org/10.1021/jp9934477
  5. Rehm, J. M.; McLendon, G. L.; Nagasawa, Y.; Yoshihara, K.; Moser, J.; Gratzel, M. J. Phys. Chem. 1996, 100, 2820.
  6. Xia, J.; Masaki, N.; Jiang, K.; Yanagida, S. J. Photochem. and Photobiol. A: Chemistry 2007, 188, 120-127. https://doi.org/10.1016/j.jphotochem.2006.11.028
  7. Xia, J.; Yanagida, S. Solar Energy doi:10.1016/j.solener. 2009, 10, 005.
  8. Hattori, R.; Goto, H. Thin Solid Films 2007, 515, 8045-8049. https://doi.org/10.1016/j.tsf.2007.03.079
  9. Patrocinio, A. O. T.; Paterno, L. G.; Iha, N. Y. M. J. Photochem. and Photobiol. A: Chemistry 2009, 205, 23-27. https://doi.org/10.1016/j.jphotochem.2009.04.008
  10. Cameron, P. J.; Peter, L. M. J. Phys. Chem. B 2003, 107, 14394- 14400. https://doi.org/10.1021/jp030790+
  11. Hu, L. H.; Dai, S. Y.; Wang, J.; Xiao, S. F.; Sui, Y. F.; Huang, Y.; Chen, S. H.; Kong, F. T.; Pan, X.; Liang, L. Y.; Wang, K. J. J. Phys. Chem. B 2007, 111, 358-362. https://doi.org/10.1021/jp065541a
  12. Xia, J. B.; Masaki, N.; Jiang, K. J.; Yanagida, S. J. Phys. Chem. C 2007, 111, 8092-8097. https://doi.org/10.1021/jp0707384
  13. Gregg, B. A.; Pichot, F.; Ferrere, S.; Fields, C. L. J. Phys. Chem. B 2001, 105, 1422. https://doi.org/10.1021/jp003000u
  14. Xia, J. B.; Masaki, N.; Jiang, K. J.; Wada, Y.; Yamagida, S. Chem. Lett. 2006, 35, 252. https://doi.org/10.1246/cl.2006.252
  15. Waita, S. M.; Aduda, B. O.; Mwabora, J. M.; Niklasson, G. A.; Granqvist, C. G.; Boschloo, G. J. Electroanal. Chem. 2009, 637, 79-83. https://doi.org/10.1016/j.jelechem.2009.10.004
  16. Pechini, M. US patent no. 3. 1967, 330, 697.
  17. Han, C.-H.; Lee, H.-S.; Han, S.-D. Bull. Korean Chem. Soc. 2008, 29, 1495. https://doi.org/10.5012/bkcs.2008.29.8.1495
  18. Ferber, J.; Stangi, R.; Luther, J. Sol. Energ. Mater. Sol. Cells 1998, 53, 29-54. https://doi.org/10.1016/S0927-0248(98)00005-1
  19. Peter, L. J. Electroanal. Chem. 2007, 599, 233-240. https://doi.org/10.1016/j.jelechem.2006.02.033
  20. Hart, J. N.; Menzies, D.; Cheng, Y. B.; Simon, G. P.; Spiccia, L. C. R. Chimie 2006, 9, 622-626. https://doi.org/10.1016/j.crci.2005.02.052

Cited by

  1. Improved electrochemical performance of dye-sensitized solar cell via surface modifications of the working electrode by electrodeposition vol.30, pp.3, 2013, https://doi.org/10.1007/s11814-012-0189-7
  2. Blocking Layers vol.5, pp.12, 2013, https://doi.org/10.1021/am401110n
  3. Blocking Layers for Dye-Sensitized Solar Cells vol.6, pp.6, 2013, https://doi.org/10.1002/cssc.201300067
  4. Compact Film for High-Performance Dye-Sensitized Solar Cells vol.6, pp.13, 2014, https://doi.org/10.1021/am501955f
  5. Room Temperature Synthesis of Highly Compact TiO2 Coatings by Vacuum Kinetic Spraying to Serve as a Blocking Layer in Polymer Electrolyte-Based Dye-Sensitized Solar Cells vol.24, pp.3, 2015, https://doi.org/10.1007/s11666-014-0204-0
  6. Effect of titanium oxide compact layer in dye-sensitized solar cell prepared by liquid-phase deposition vol.122, pp.11, 2016, https://doi.org/10.1007/s00339-016-0492-y
  7. The influence of magnesium oxide interfacial layer on photovoltaic properties of dye-sensitized solar cells vol.122, pp.9, 2016, https://doi.org/10.1007/s00339-016-0369-0
  8. Synthesis and improved dye-sensitized solar cells performance of TiO2 nanowires/nanospheres composites vol.27, pp.12, 2016, https://doi.org/10.1007/s10854-016-5390-8
  9. Cr-doped TiO2-based dye-sensitized solar cells with Cr-doped TiO2 blocking layer vol.81, pp.3, 2017, https://doi.org/10.1007/s10971-016-4257-z
  10. One-Step Acidic Hydrothermal Preparation of Dendritic Rutile TiO2 Nanorods for Photocatalytic Performance vol.8, pp.9, 2018, https://doi.org/10.3390/nano8090683