Dietary Tea Catechin Inclusion Changes Plasma Biochemical Parameters, Hormone Concentrations and Glutathione Redox Status in Goats

  • Zhong, Rongzhen (Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences) ;
  • Xiao, Wenjun (National Engineering Center of Botanical Functional Ingredients Utilization, Hunan Agricultural University) ;
  • Ren, Guopu (Department of Food Science and Engineering, Central South University of Forestry and Technology) ;
  • Zhou, Daowei (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences) ;
  • Tan, Chuanyan (Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences) ;
  • Tan, Zhiliang (Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences) ;
  • Han, Xuefeng (Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences) ;
  • Tang, Shaoxun (Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences) ;
  • Zhou, Chuanshe (Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences) ;
  • Wang, Min (Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences)
  • Received : 2011.01.13
  • Accepted : 2011.03.17
  • Published : 2011.12.01


The beneficial effects of tea catechins (TCs) are related not only to their antioxidant potential but also to the improvement of animal meat quality. In this study, we assessed the effects of dietary TC supplementation on plasma biochemical parameters, hormone responses, and glutathione redox status in goats. Forty Liuyang goats were randomly divided into four equal groups (10 animals/group) that were assigned to four experimental diets with TC supplementation at 4 levels (0, 2,000, 3,000 or 4,000 mg TC/kg DM feed). After a 60-day feeding trial, all goats were slaughtered and sampled. Dietary TC treatment had no significant effect on blood biochemical parameters, however, low-density lipoprotein cholesterol (p<0.001), triglyceride (p<0.01), plasma urea nitrogen (p<0.01), and glucose (p<0.001) decreased and total protein (p<0.01) and albumin (p<0.05) increased with the feeding time extension, and day 20 was the turning point for most of changes. Interactions were found in glutathione (p<0.001) and the ratio of reduced and oxidized glutathione (p<0.05) in whole blood between treatment and feeding time. Oxidized glutathione in blood was reduced (p<0.05) by 2,000 mg TC/kg feed supplementation, and a similar result was observed in longissimus dorsi muscle. Though plasma glutathione peroxidase (p<0.01) and glutathione reductase (p<0.05) activities were affected by treatment and feeding time interactions, and glutathione S-transferases activity increased with feeding day extension, no changed values appeared in longissimus dorsi muscle. In conclusion, dietary TC supplementation affected the concentrations of some blood metabolites and accelerated GSH depletion in the blood of goats. In terms of less high-density lipoprotein cholesterol, the highest insulin and IGF-I concentrations, the highest ratio of reduced and oxidized glutathione in plasma, the dosage of 2,000 mg TC/kg feed might be desirable for growing goats to prevent glutathione depletion and keep normal physiological metabolism.


  1. Anthony, M. S., T. B. Clarkson and J. K. Williams. 1998. Effects of soy isoflavones on atherosclerosis: potential mechanism. Am. J. Clin. Nutr. 68:1390S-1393S.
  2. Aurousseau, B. 2002. Oxygen radicals in farm animals. Physiological effects and consequences on animal products. Prod. Anim. 15:67-82.
  3. Cereser, C., J. Guichard, J. Drai, E. Bannier, I. Garcia, S. Boget, P. Parvaz and A. Revol. 2001. Quantitation of reduced and total glutathione at the femtomole level by high-performance liquid chromatography with fluorescence detection: application to red blood cells and cultured fibroblasts. J. Chromatogr. B, Biomed. Sci. Appl. 752:123-132.
  4. Chai, Y. C., S. S. Ashraf, K. Rokutan, R. B. Jr. Johnston and J. A. Thomas. 1994. S-thiolation of individual human neutrophil proteins including actin by stimulation of the respiratory burst: evidence against a role for glutathione disulfide. Arch. Biochem. Biophys. 310:273-281.
  5. Chang, C. K., C. Y. Tsai, L. S. Lin, S. B. Lou, S. S. Liao and J. T. Cheng. 1997. Change of superoxide dismutase (SOD) mRNA and activity in response to hypoxic stress in cultured Wistar rat glioma cells. Neurosci. Lett. 232:115-118.
  6. Chou, F. P., Y. C. Chu, J. D. Hsu, H. C. Chiang and C. J. Wang. 2000. Specific induction of glutathione S-transferase GSTM2 subunit expression by epigallocatechin gallate in rat liver. Biochem. Pharmacol. 60:643-650.
  7. Cnubben, N. H. P., I. M. C. M. Rietjens, H. Wortelboer, J. V. Zanden and P. J. V. Bladeren. 2001. The interplay of glutathione-related processes in antioxidant defense. Environ. Toxicol. Pharmacol. 10:141-152.
  8. Cooper, A. J. L. and B. S. Kristal. 1997. Multiple roles of glutathione in the central nervous system. Biol. Chem. 378:793-802.
  9. Coruh, N., S. A. G. Celep, F. Ozgokce and M. İscan. 2007. Antioxidant capacities of Gundelia tournefortii L. extracts and inhibition on glutathione-S-transferase activity. Food Chem. 100:1249-1253.
  10. Cotgreave, I. A. and R. G. Gerdes. 1998. Recent trends in glutathione biochemistry-glutathione-protein interactions: a molecular link between oxidative stress and cell proliferation? Biochem. Biophys. Res. Commun. 242:1-9.
  11. Das, S. K. and D. M. Vasudevan. 2005. Biochemical diagnosis of alcoholism. Indian J. Clin. Biochem. 20:35-42
  12. Fielding, J. F. and P. E. Fielding. 1995. Molecular physiology of reverse cholesterol transport. J. Lipid Res. 36:211-228.
  13. Galati, G. and P. J. O'Brien. 2004. Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic. Biol. Med. 37:287-303
  14. Galipalli, S., K. M. Gadiyaram, B. Kouakou, T. H. Terrill and G. Kannan. 2004. Physiological responses to preslaughter transportation stress in Tasco-supplemented Boer goats. SA J. Anim. Sc. 34:92-94.
  15. Glatzle, D., J. P. Vuilleumier, F. Weber and K. Decker. 1974. Glutathione reductase test with whole blood, a convenient procedure for the assessment of the riboflavin status in human. Experientia 30:665-667.
  16. Granado-Serrano, A. B., M. A. Martín, L. Goya, L. Bravo and S. Ramos. 2009. Time-course regulation of survival pathways by epicatechin on HepG2 cells. J. Nutr. Biochem. 20:115-124.
  17. Habig, W. H., M. J. Pabseit and W. B. Jakoby. 1974. Glutathione transferase. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249:7130-7139.
  18. Hara, Y. 2001. Lipid lowering effects. Green tea. New York: Marcel Dekker, 112-128.
  19. Hashim, M. S., S. Lincy, V. Remya, M. Teena and L. Anila. 2005. Effect of polyphenolic compounds from Coriandrum sativum on $H_2O_2-induced$ oxidative stress in human lymphocytes. Food Chem. 92:653-660.
  20. He, Y. and F. Shahidi. 1997. Antioxidant activity of green tea and its catechins in a fish meat model system. J. Agric. Food Chem. 45:4262-4266.
  21. Henry, J. P. 1984. Stephens-Larson P: Reduction of chronic psychosocial hypertension in mice by decaffeinated tea. Hypertension 6:437-444.
  22. Hsu, C. S., W. C. Chiu and S. L. Yeh. 2003. Effects of soy isoflavone supplementation on plasma glucose, lipids, and antioxidant enzyme activities in streptozotocin-induced diabetic rats. Nutr. Res. 23:67-75.
  23. Hultberg, M. and B. Hultberg. 2006. The effect of different antioxidants on glutathione turnover in human cell lines and their interaction with hydrogen peroxide. Chem. Biol. Interact. 163:192-198
  24. Ikeda, I., Y. Imasato, E. Sasaki, M. Nakayama, H. Nagao, T. Takeo, F. Yayabe and M. Sugano. 1992. Tea catechins decrease micellar solubility and intestinal absorption of cholesterol in rats. Biochim. Biophys. Acta. 1127:141-146.
  25. Jones, D. P. 2006. Redefining oxidative stress. Antioxid. Redox Sign. 8:1865-1879.
  26. Kannan, G., K. E. Saker, T. H. Terrill, B. Kouakou, S. Galipalli and S. Gelaye. 2007. Effect of seaweed extract supplementation in goats exposed to simulated preslaughter stress. Small Rumin. Res. 73:221-227.
  27. Khan, S. A., P. Priyamvada, N. A. Arivarasu, S. Khan and A. N. K. Yusufi. 2007. Influence of green tea on enzymes of carbohydrate metabolism, antioxidant defense, and plasma membrane in rat tissues. Nutr. 23:687-695.
  28. Li, X., C. E. Cobb, K. E. Hill, R. F. Burk and J. M. May. 2001. Mitochondrial uptake and recycling of ascorbic acid. Arch. Biochem. Biophys. 87:143-153.
  29. Littell, R. C., G. A. Milliken, W. W. Stroup and R. D. Wolfinger. 1996. SAS system for mixed models. SAS Inst. Inc., Cary, NC.
  30. Liu, K., T. E. Cuddy and G. N. Pierce. 1992. Oxidative status of lipoproteins in coronary disease patients. Am. Heart J. 123:285-290.
  31. Liu, Z., L. P. Ma, B. Zhou and Z. L. Liu. 2000. Antioxidative effects of green tea polyphenols on free radical initiated and photosensitized oxidation of human low density lipoprotein. Chem. Phys. Lipids 106:53-63.
  32. Lowry, O. H., N. J. Rosenbrough, A. L. Farr and R. J. Randall. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 134:265-275.
  33. Malet, P. F. 1985. Animal models of gallstone formation. In Gallstones (Ed. S. Cohen and R. D. Soloway). New York: Edinburgh7 Churchill and Livingstone, 309-333.
  34. Mason, L. M., S. A. Hogan, A. Lynch, P. G. O'Sullivan and J. P. Kerry. 2005. Effects of restricted feeding and antioxidant supplementation on pig performance and quality characteristics of longissimus dorsi muscle from Landrace and Duroc pigs. Meat Sci. 70:307-317.
  35. Meister, A. and M. E. Anderson. 1983. Glutathione. Annu. Rev. Biochem. 52:711-760.
  36. Minka, N. S., J. O. Ayo, A. K. B. Sackey and A. B. Adelaiye. 2009. Assessment and scoring of stresses imposed on goats during handling, loading, road transportation and unloading, and the effect of pretreatment with ascorbic acid. Livest. Sci. 125:275-282.
  37. Na, H. K. and Y. J. Surh. 2008. Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food Chem. Toxicol. 46:1271-1278.
  38. Navarro, J., E. Obrador, J. A. Pellicer, M. Asensi, J. Vina and J. M. E. Strela. 1997. Blood glutathione as an index of radiation-induced oxidative stress in mice and humans. Free Radic. Biol. Med. 22:1203-1209.
  39. Nonaka, G., O. Kawakami and I. Nishioka. 1983. Tannins and related compounds. XV. A new class of dimeric flavan-3-ol gallates, theasineneins A and B, and proanthocyanidin gallates from green tea leaf. Chem. Pharm. Bull. 31:3906-3910.
  40. Nordberg, J. and E. S. J. Arner. 2001. Reactive oxygen species, antioxidant and the mammalian thioredoxin system. Free Radic. Biol. Med. 31:1287-1312.
  41. NRC. 1981. Nurient requirements of goats: Angora, dairy and meat goats in temperate and tropical countries. Washington DC: National Academy Press.
  42. Pantke, U., T. Volk, M. Smutzler, W. J. Kox, N. Sitte and T. Grune. 1999. Oxidized proteins as a marker of oxidative stress during coronary heart surgery. Free Radic. Biol. Med. 27:1080-1086.
  43. Periasamy, S., E. S. Kuruvimalai and S. S. Chennam. 2007. Attenuation of 4-Nitroquinoline 1-oxide induced in vitro lipid oxidation by green tea polyphenols. Life Sci. 80:1080-1086.
  44. Raederstoff, D. G., M. F. Schlachter, V. Elste and P. Weber. 2003. Effect of EGCG on lipid absorption and plasma lipid levels in rats. J. Nutr. Biochem. 14:326-332.
  45. Riesmersma, R. A., C. A. Rice-Evans, R. M. Tyrrell, M. N. Clifford and M. E. J. Lean. 2001. Tea flavonoids and cardiovascular health. Q. J. Med. 94:177-182.
  46. Rosenblat, M., N. Volkova, R. Coleman, Y. Almagor and M. Aviram. 2008. Antiatherogenicity of extra virgin olive oil and its enrichment with green tea polyphenols in the atherosclerotic apolipoprotein-E-deficient mice: enhanced macrophage cholesterol efflux. J. Nutr. Biochem. 19:514-523.
  47. Sabu, M. C., K. Smitha and R. Kuttan. 2002. Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. J. Ethnopharmacol. 83:1009-1016.
  48. Samiec, P. S., C. Drews-Botsch, E. W. Flagg, J. C. Kurtz, P. Jr. Sternberg, R. L. Reed and D. P. Jones. 1998. Glutathione in human plasma: decline in association with aging, age-related macular degeneration, and diabetes. Free Radic. Biol. Med. 24:699-704.
  49. Sgorlon, S., G. Stradaioli, B. Stefanon, G. Altimer and R. Della-Loggia. 2005. Dietary grape polyphenols modulate oxidative stress in ageing rabbits. In Proceedings of 16th Nat. Congr. Aspa, Torino, Italy. Ital. J. Anim. Sci. 4:541-543.
  50. Shirai, N. and H. Suzuki. 2003. Effects of simultaneous docosahexaenoic acid and catechin intakes on the plasma and liver lipids in low- and high-fat diet fed mice. Nutr. Res. 23:959-969.
  51. Statistical Analysis System. 2002: User's guide: statistics. Version 9.1 Edition. SAS Inc., Cary, NC, USA.
  52. Steinberg, D. and J. L. Witztum. 2002. Is the oxidative modification hypothesis relevant to human atherosclerosis? Do the antioxidant trials conducted to date refute the hypothesis? Circulation 105:2107-2011.
  53. Tachibana, H., K. Koga, Y. Fujimura and K. Yamada. 2004. A receptor for green tea polyphenol EGCG. Nat. Struct. Mol. Biol. 11:380-381.
  54. Tan, C. Y., R. Z. Zhong, Z. L. Tan, X. F. Han, S. X. Tang, W. J. Xiao, Z. H. Sun and M. Wang. 2010. Dietary inclusion of tea catechins changes fatty acid composition of muscle in goats. Lipids, DOI:10.1007/S11745-010-3477-1.
  55. Tang, J., C. Faustman, S. Lee and T. A. Hoagland. 2003. Effect of glutathione on oxymyoglobin oxidation. J. Agric. Food Chem. 51:1691-1695.
  56. Tang, S. Z., S. Y. Ou, X. S. Huang, W. Li, J. P. Kerry and D. J. Buckley. 2006. Effects of added tea catechins on color stability and lipid oxidation in minced beef patties held under aerobic and modified atmospheric packaging conditions. J. Food Eng. 77:248-253.
  57. Tzeng, W. F., T. J. Chiou, C. P. Wang, J. L. Lee and Y. H. Chen. 1994. Cellular thiols as a determinant of responsiveness to menadione in cardiomyocytes. J. Mol. Cell. Cardiol. 26:889-897.
  58. Vinson, J. A., Y. A. Dabbagh, M. M. Serry and J. Jang. 1995. Plant flavonoids, especially tea flavonols, are powerful antioxidants using an in vitro oxidation model for heart disease. J. Agri. Food Chem. 43:2800-2802.
  59. Winterbourn, C. C. and D. Metodiewa. 1994. The reaction of superoxide with reduced glutathione. Arch. Biochem. Biophys. 314:284-290.
  60. Yang, C. S., X. Wang, G. Lu and S. C. Picinich. 2009. Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat. Rev. Cancer. 9:429-439.
  61. Zelko, I. N., T. J. Mariani and R. J. Folz. 2002. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution and expression. Free Radical Bio. Med. 33:337-349.
  62. Zhang, K. and N. P. Das. 1994. Inhibitory effects of plant polyphenols on rat liver glutathione S-transferases. Biochem. Pharmacol. 47:2063-2068.
  63. Zhang, K., E. B. Yang, W. Y. Tang, K. P. Wong and P. Mack. 1997. Inhibition of glutathione reductase by plant polyphenols. Biochem. Pharmacol. 54:1047-1053.
  64. Zhong, R. Z., C. Y. Tan, X. F. Han, S. X. Tang, Z. L. Tan and B. Zeng. 2009. Effect of dietary tea catechins supplementation in goats on the quality of meat kept under refrigeration. Small Rumin. Res. 87:122-125.

Cited by

  1. Effects of supplementation with green tea by-products on growth performance, meat quality, blood metabolites and immune cell proliferation in goats vol.99, pp.6, 2014,
  2. Effects of a diet containing dried grape pomace on blood metabolites and milk composition of dairy cows vol.97, pp.8, 2016,
  3. Host-mediated effects of phytonutrients in ruminants: A review 1 vol.100, pp.7, 2017,