Detection of Mendelian and Parent-of-origin Quantitative Trait Loci for Meat Quality in a Cross between Korean Native Pig and Landrace

  • Choi, B.H. (Animal Genomics and Bioinformatics Division, National Institute of Animal Science) ;
  • Lee, Y.M. (School of Biotechnology, Yeungnam University) ;
  • Alam, M. (School of Biotechnology, Yeungnam University) ;
  • Lee, J.H. (Gyeongbuk Livestock Research Institute) ;
  • Kim, T.H. (Animal Genomics and Bioinformatics Division, National Institute of Animal Science) ;
  • Kim, K.S. (Department of Animal Science, Chungbuk National University) ;
  • Kim, J.J. (School of Biotechnology, Yeungnam University)
  • Received : 2011.06.07
  • Accepted : 2011.08.19
  • Published : 2011.12.01


This study was conducted to detect quantitative trait loci (QTL) affecting meat quality in an $F_2$ reference population of Korean native pig and Landrace crossbreds. The three-generation mapping population was generated with 411 progeny from 38 $F_2$ full-sib families, and 133 genetic markers were used to produce a sex-average map of the 17 autosomes. The data set was analyzed using least squares Mendelian and parent-of-origin interval-mapping models. Lack-of-fit tests between models were used to characterize the QTL for mode of gene expressions. A total of 10 (32) QTL were detected at the 5% genome (chromosome)-wise level for the analyzed traits. Of the 42 QTL detected, 13 QTL were classified as Mendelian, 10 as paternal, 14 as maternal, and 5 as partial expressed QTL, respectively. Among the QTL detected at 5% genome-wise level, four QTL had Mendelian mode of inheritance on SSCs 5, 10, 12, and 13 for cooking loss, drip loss, crude lipid and crude protein, respectively; two QTL maternal inheritance for pH at 24-h and shear force on SSC11; three QTL paternal inheritance for CIE b and Hunter b on SSC9 and for cooking loss on SSC15; and one QTL partial expression for crude ash on SSC13, respectively. Most of the Mendelian QTL (9 of 13) had a dominant mode of gene action, suggesting potential utilization of heterosis for genetic improvement of meat quality within the cross population via marker-assisted selection.


QTL;Meat Quality Trait;Korean Native Pig;Landrace;Parent-of-origin


  1. AOAC. 1990. Official methods of analysis. 15th Ed. Association of official analytical chemists. Washington, DC, USA.
  2. Bidanel, J. P. and M. Rothschild. 2002. Current status of quantitative trait locus mapping in pigs. Pig News Inf. 23(2):39N-53N.
  3. Cho, S.-H. 2006. Characteristics of carcass and meat qualities in Korean native pigs. In symposium of conservation and utilization of Korean native pigs. Korean Livestock Research Institute, pp. 33-50.
  4. Choi, B. H., J. S. Lee, G. W. Jang, H. Y. Lee, J. W. Lee, K. T. Lee, H. Y. Chung, H. S. Park, S. J. Oh, S. S. Sun, K. H. Myung, I. C. Cheong and T. H. Kim. 2006. Mapping of the porcine Calpastatin gene and association study of its variance with economic traits in pigs. Asian-Aust. J. Anim. Sci. 19:1085-1089.
  5. Choy, Y. H., G. J. Jeon, T. K. Kim, B. H. Choi and H. W. Chung. 2002a. Ear type and coat color on growth performances of crossbred pigs. Asian-Aust. J. Anim. Sci. 15:1178-1181.
  6. Choy, Y. H., G. J. Jeon, T. K. Kim, B. H. Choi, I. C. Cheong, H. K. Lee, K. S. Seo, S. D. Kim, Y. I. Park and H. W. Chung. 2002b. Genetic analyses of carcass characteristics in crossbred pigs: cross between Landrace sows and Korean wild boars. Asian-Aust. J. Anim. Sci. 15:1080-1084.
  7. Duan, Y.-Y., J.-W. Ma, F. Yuan, L.-B. Huang, K.-X. Yang, J.-P. Xie, G.-Z. Wu and L.-S. Huang. 2009. Genome-wide identification of quantitative trait loci for pork temperature, pH decline, and glycolytic potential in a large-scale White Duroc×Chinese Erhualian resource population. J. Anim. Sci. 87:9-16.
  8. Duthie, C., G. Simm, A. Doeschl-Wilson, E. Kalm, P. W. Knap and R. Roehe. 2008. Quantitative trait loci for chemical body composition traits in pigs and their positional associations with body tissues, growth and feed intake. Anim. Genet. 39:130-140.
  9. Duthie, C., G. Simm, A. Doeschl-Wilson, E. Kalm, P. W. Knap and R. Roehe. 2011. Quantitative trait loci for meat quality traits in pigs considering imprinting and epistatic effects. Meat Sci. 87:394-402.
  10. Edwards, D. B., R. O. Bates and W. N. Osburn. 2003. Evaluation of Duroc- vs. Pietrain-sired pigs for carcass and meat quality measures. J. Anim. Sci. 81:1895-1899.
  11. Edwards, D. B., C. W. Ernst, N. E. Raney, M. E. Doumit, M. D. Hoge and R. O. Bates. 2008. Quantitative trait locus mapping in an F2 $Duroc{\times}Pietrain$ resource population: II. Carcass and meat quality traits. J. Anim. Sci. 86:254-266.
  12. Haley, C. S., S. A. Knott and J.-M. Elsen. 1994. Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics 136:1195-1207.
  13. Hwang, I. H., B. Y. Park, S. H. Cho, J. H. Kim and J. M. Lee. 2004. Identification of muscle proteins related to objective meat quality in Korean native black pig. Asian-Aust. J. Anim. Sci. 17:1599-1607.
  14. Jennen, D. G. J., A. D. Brings, G. Liu, H. Jungst, E. Tholen, E. Jonas, D. Tesfaye, K. Schellander and C. Phatsara. 2007. Genetic aspects concerning drip loss and water-holding capacity of porcine meat. J. Anim. Breed. Genet. 124(Suppl.1):2-11.
  15. Kim, T. H., K. S. Kim, B. H. Choi, D. H. Yoon, G. W. Jang, K. T. Lee, H. Y. Chung, H. Y. Lee, H. S. Park and J. W. Lee. 2005. Genetic structure of pig breeds from Korea and China using microsattellite loci analysis. J. Anim. Sci. 83:2255-2263.
  16. Kim, E. H., B. H. Choi, K. S. Kim, C. K. Lee, B. W. Cho, T.-H. Kim and J. J. Kim. 2007. Detection of Mendelian and parent-of-origin quantitative trait loci in a cross between Korean native pig and Landrace I. growth and body composition traits. Asian-Aust. J. Anim. Sci. 20:669-676.
  17. Kristensen, L. and P. P. Purslow. 2001. The effect of ageing on the water-holding capacity of pork: role of cytoskeletal proteins. Meat Sci. 58:17-23.
  18. Li, X., S.-W. Kim, K.-T. Do, Y.-K. Ha, Y.-M. Lee, S.-H. Yoon, H.-B. Kim, J.-J. Kim, B.-H. Choi and K.-S. Kim. 2011. Analyses of porcine public SNPs in coding-gene regions by resequencing and phenotypic association studies. Mol. Biol. Rep. 38:3805-3820.
  19. Liu, G., D. G. J. Jennen, E. Tholen, H. Juengst, T. Kleinwachter, M. Holker, D. Tesfaye, G. Un, H. -J. Schreinemachers, E. Murani, S. Ponsuksili, J.-J. Kim, K. Schellander and K. Wimmers. 2007. A genome scan reveals QTL for growth, fatness, leanness and meat quality in a Duroc-Pietrain resource population. Anim. Genet. 38:241-252.
  20. Ma. J., J. Ren, Y. Guo, Y. Duan, N. Ding, L. Zhou, L. Li, X. Yan, K. Yang, L. Huang, Y. Song, J. Xie, D. Milan and L. Huang. 2009. Genome-wide identification of quantitative trait loci for carcass composition and meat quality in a large-scale White Duroc Chinese Erhualian resource population. Anim. Genet. 40:637-647.
  21. Malek, M., J. C. M. Dekkers, H. K. Lee, T. J. Baas, K. Prusa, E. Huff-Lonergan and M. F. Rothschild. 2001. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. II. Meat and muscle composition. Mamm. Genome 12:637-645.
  22. McLaren, D. G., D. S. Buchanan and R. K. Johnson. 1987. Growth performance for four breeds of swine: crossbred females and purebred and crossbred boars. J. Anim. Sci. 64:99-108.
  23. Otto, G., R. Roehe, H. Looft, L. Thoelking, M. Henning, G. S. Plastow and E. Kalm. 2006. Drip loss of case-ready meat and of premium cuts and their associations with earlier measured sample drip loss, meat quality and carcass traits in pigs. Meat Sci. 72:680-687.
  24. Rohrer, G. A., R. M. Thallman, S. Shackelford, T. Wheeler and M. Koohmaraie. 2005. A genome scan for loci affecting pork quality in a Duroc-Landrace F2 population. Anim. Genet. 37:17-27.
  25. Thomsen, H., H. K. Lee, M. F. Rothschild, M. Malek and J. C. M. Dekkers. 2004. Characterization of quantitative trait loci for growth and meat quality in a cross between commercial breeds of swine. J. Anim. Sci. 82:2213-2228.
  26. Wheeler, T. L., S. D. Shackelford and M. Koohmaraie. 2000. Variation in proteolysis, sarcomere length, collagen content, and tenderness among major pork muscles. J. Anim. Sci. 78:958-965.

Cited by

  1. Effects of Crossbreeding and Gender on the Carcass Traits and Meat Quality of Korean Native Black Pig and Duroc Crossbred vol.27, pp.7, 2014,