Effect of Triticale Dried Distillers Grains with Solubles on Ruminal Bacterial Populations as Revealed by Real Time Polymerase Chain Reaction

  • Wu, R.B. (College of Animal Science, Inner Mongolia Agricultural University) ;
  • Munns, K. (Agriculture and Agri-Food Canada, Lethbridge Research Centre) ;
  • Li, J.Q. (College of Animal Science, Inner Mongolia Agricultural University) ;
  • John, S.J. (S.J. John) ;
  • Wierenga, K. (Agriculture and Agri-Food Canada, Lethbridge Research Centre) ;
  • Sharma, R. (Agriculture and Agri-Food Canada, Lethbridge Research Centre) ;
  • Mcallister, T.A. (Agriculture and Agri-Food Canada, Lethbridge Research Centre)
  • 투고 : 2010.10.30
  • 심사 : 2011.01.16
  • 발행 : 2011.11.01


Real time PCR was used in this study to determine the effect of triticale dried distillers grains with solubles (TDDGS) as a replacement for grain or barley silage in finishing diets on the presence of six classical ruminal bacterial species (Succinivibrio dextrinosolvens, Selenomonas ruminantium, Streptococcus bovis, Megasphaera elsdenii, Prevotella ruminicola and Fibrobacter succinogenes) within the rumen contents of feedlot cattle. This study was divided into a step-wise adaptation experiment (112 days) that examined the effects of adaptation to diets containing increasing levels of TDDGS up to 30% (n = 4), a short-term experiment comparing animals (n = 16) fed control, 20%, 25% or 30% TDDGS diets over 28 days, and a rapid transition experiment (56 days) where animals (n = 4) were rapidly switched from a diet containing 30% TDDGS to a barley-based diet with no TDDGS. It was found that feeding TDDGS as replacement for barley grain (control vs. 20% TDDGS) decreased 16S rRNA copy numbers of starch-fermenting S. ruminantium and S. bovis (p<0.001 and p = 0.04, respectively), but did not alter 16S rRNA copy numbers of the other rumen bacteria. Furthermore, feeding TDDGS as a replacement barley silage (20% vs. 25% and 30% TDDGS) increased 16S rRNA copy numbers of S. ruminantium, M. elsdenii and F. succinogenes (p<0.001; p = 0.03 and p<0.001, respectively), but decreased (p<0.001) the 16S rRNA copy number of P. ruminicola. Upon removal of 30% TDDGS and return to the control diet, 16S rRNA copy numbers of S. ruminantium, M. elsdenii and F. succinogenes decreased (p = 0.01; p = 0.03 and p = 0.01, respectively), but S. dextrinosolvens and S. bovis increased (p = 0.04 and p = 0.009, respectively). The results suggest that replacement of TDDGS for grain reduces 16S rRNA copy numbers of starch-fermenting bacteria, whereas substitution for barley silage increases 16S rRNA copy numbers of bacteria involved in fibre digestion and the metabolism of lactic acid. This outcome supports the contention that the fibre in TDDGS is highly fermentable.


Cattle;Real Time PCR;Rumen Microorganisms;Triticale Dried Distillers Grains with Solubles


  1. Al-Suwaiegh, S., K. C. Fanning, R. J. Grant, C. T. Milton and T. J. Klopfenstein. 2002. Utilization of distillers grains from the fermentation of sorghum or corn in diets for finishing beef and lactating dairy cattle. J. Anim. Sci. 80:1105-1111.
  2. Anderson, J. L., D. J. Schingoethe, K. F. Kalscheur and A. R. Hippen. 2006. Evaluation of dried and wet distillers grains included at two concentrations in the diets of lactating dairy cows. J. Dairy Sci. 89:3133-3142.
  3. Beauchemin, K. A., W. Z. Yang and L. M. Rode. 2001. Effects of barley grain processing on the site and extent of digestion of beef feedlot finishing diets. J. Anim. Sci. 79:1925-1936.
  4. Buckner, C. D., G. E. Erickson, T. L. Mader, S. L. Colgan, K. K. Karges and M. L. Gibson. 2007. Optimum levels of dry distillers grains with solubles for finishing beef steers. Nebr. Beef Cattle Rep. MP90:36-38.
  5. Canadian Council on Animal Care. 1993. Guide to the care and use of experimental animals. Volume 1. E. D. Olfert, B. M. Cross and A. A. McWilliam, edn. CCAC, Ottawa, ON.
  6. Chapman, B., D. Salmon, C. Dyson and K. Blackley. 2005. Triticale production and utilization manual: Spring and winter triticale for grain, forage and value-added. Alberta Agriculture, Food and Rural Development, Edmonton, Alberta, Canada.$department/deptdocs.nsf/all/fcd10535 Accessed Oct. 27, 2010.
  7. Cotta, M. A. 1988. Amylolytic activity of selected species of ruminal bacteria. Appl. Environ. Microbiol. 54:772-776.
  8. Cotta, M. A. 1992. Interaction of ruminal bacteria in the production and utilization of maltooligosaccharides from starch. Appl. Environ. Microbiol. 58:48-54.
  9. Counotte, G. H. M., R. A. Prins, R. H. A. Janssen and M. J. A. DeBie. 1981. Role of Megasphaera elsdenii in the fermentation of DL-[2-$^{13}C$] lactate in the rumen of dairy cattle. Appl. Environ. Microbiol. 42:649-655.
  10. Dawson, K. A. and M. J. Allison. 1988. Digestive disorders and nutritional toxicity. In: The Rumen Microbial Ecosystem (Ed. P. N. Hobson). Elsevier Science Publishers Ltd., London. pp. 445-459.
  11. Dunlop, R. H. 1972. Pathogenesis of ruminant lactic acidosis. Adv. Vet. Sci. Comp. Med. 16:259-302.
  12. Gibb, D. J., X. Hao and T. A. McAllister. 2008. Effect of dried distillers' grains from wheat on diet digestibility and performance in feedlot cattle. Can. J. Anim. Sci. 88:659-665.
  13. Klieve, A. V., D. Hennessy, D. Ouwerkerk, R. J. Forster, R. I. Mackie and G. T. Attwood. 2003. Establishing populations of Megasphaera elsdenii YE 34 and Butyrivibrio fibrisolvens YE 44 in the rumen of cattle fed high grain diets. J. Appl. Microbiol. 95:621-630.
  14. Krause, D. O., W. J. Smith, L. L. Conlan, J. M. Gough, M. A. Williamson and C. S. McSweeney. 2003. Diet influences the ecology of lactic acid bacteria and Escherichia coli along the digestive tract of cattle: neural networks and 16S rDNA. Microbiol. 149:57-65.
  15. Liu, C., D. J. Schingoethe and G. A. Stegeman. 2000. Corn distillers grains versus a blend of protein supplements with or without ruminally protected amino acids for lactating cows. J. Dairy Sci. 83:2075-2084.
  16. Mackie, R. I. and F. M. C. Gilchrist, 1979. Changes in lactateproducing and lactate utilizing bacteria in relation to pH in the rumen of sheep during stepwise adaptation to a highconcentrate diet. Appl. Environ. Microbiol. 38:422-430.
  17. McAllister, T. A., K.-J. Cheng, L. M. Rode and C. W. Forsberg. 1990. Digestion of barley, maize, and wheat by selected species of ruminal bacteria. Appl. Environ. Microbiol. 56:3146-3153.
  18. Mosoni, P., F. Chaucheyras-Durand, C. Bera-Maillet and E. Forano. 2007. Quantification by real time PCR of cellulolytic bacteria in the rumen of sheep after supplementation of a forage diet with readily fermentable carbohydrates:effect of a yeast additive. J. Appl. Microbiol. 103:2676-2685.
  19. Nadkarni, M. A., F. E. Martin, N. A. Jacques and N. Hunter. 2002. Determination of bacterial load by real-time PCR using a broad range (universal) probe and primers set. Microbiol. 148:257-266.
  20. Nagaraja T. G. and E. C. Titgemeyer. 2007. Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook. J. Dairy Sci. 90:17-38.
  21. National Research Council. 1985. Nutrient requirements of sheep. National Academic Perss, Washigton, DC.
  22. National Research Council. 2000. Nutrient requirements of beef cattle. National Academy Press, Washington, DC.
  23. Nocek, J. E. 1997. Bovine acidosis:implication on laminitis. J. Dairy Sci. 80:1005-1028.
  24. Ojowi, M., J. J. McKinnon, A. Mustafa and D. A. Christensen. 1997. Evaluation of wheat-based distillers' grains for feedlot cattle. Can. J. Anim. Sci. 77:447-454.
  25. Owens, F. N., D. S. Secrist, W. J. Hill and D. R. Gill. 1998. Acidosis in cattle: a review. J. Anim. Sci. 76:275-286.
  26. Russell, J. B. and T. Hino. 1985. Regulation of lactate production in Streptococcus bovis: a spiralling effect that contributes to rumen acidosis. J. Dairy Sci. 68:1712-1721.
  27. Russel J. B. and J. L. Rychlik. 2001. Factors that alter rumen microbial ecology. Science 292:1119-1122.
  28. SAS Institute Inc. 2005. SAS online doc 9. 1. 3. SAS Institute Inc. Cary, NC.
  29. Schingoethe, D. J., M. J. Brouk and C. P. Birkelo. 1999. Milk production and composition from cows fed wet corn distillers grains. J. Dairy Sci. 82:574-580.
  30. Sharma, R., T. W. Alexander, S. J. John, R. J. Forster and T. A. McAllister. 2004. Relative stability of transgene DNA fragments from GM rapeseed in mixed ruminal cultures. Br. J. Nutr. 91:673-681.
  31. Stevenson, D. M. and P. J. Weimer. 2007. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen as revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 75:165-174.
  32. Stewart, C. S., H. J. Flint and M. P. Bryant. 1997. The rumen bacteria. In: The Rumen Microbial Ecosystem (Ed. P. N. Hobson and C. S. Stewart). Blackie Academic and Professional, London. pp. 23-37.
  33. Strobel, H. J. and J. B. Russell. 1986. Effect of pH and energy spilling on bacterial protein synthesis by carbohydrate-limited cultures of mixed rumen bacteria. J. Dairy Sci. 69:2941-2947.
  34. Tajima, K., R. I. Aminov, T. Nagamine, H. Matsui, M. Nakamura and Y. Benno. 2001. Diet-dependent shifts in the bacterial population of the rumen revealed with real time PCR. Appl. Environ. Microbiol. 67:2766-2774.
  35. Wanapat, M. and A. Cherdthong. 2009. Use of real-time PCR technique in studying rumen cellulolytic bacteria population as affected by level of roughage in swamp buffalo. Curr. Microbiol. 58:294-299.
  36. Weimer, P. J., D. M. Stevenson, D. R. Mertens and E. E. Thomas. 2008. Effect of monensin feeding and withdrawal on populations of individual bacterial species in the rumen of lactating dairy cows fed high-starch rations. Appl. Microbiol. Biotechnol. 80:135-145.
  37. Wierenga, K. T., T. A. McAllister, D. J. Gibb, A. V. Chaves, E. K. Okine, K. A. Beauchemin and M. Oba. 2010. Evaluation of triticale dried distillers grain as a substitute for barley grain and barley silage in feedlot finishing diets. J. Anim. Sci. 88: 3018-3029.
  38. Wells, J. E., D. O. Krause, T. R. Callaway and J. B. Russell. 1997. A bacteriocin-mediated antagonism by ruminal lactobacilli against Streptococcus bovis. FEMS Microbiol. Ecol. 22:237-243.

피인용 문헌

  1. Production of Endoglucanase, Beta-glucosidase and Xylanase by <i>Bacillus licheniformis</i> Grown on Minimal Nutrient Medium Containing Agriculture Residues vol.27, pp.7, 2014,