DOI QR코드

DOI QR Code

Removal of Divalent Heavy Metal Ions by Na-P1 Synthesized from Jeju Scoria

제주 스코리아로부터 합성된 Na-P1 제올라이트에 의한 2가 중금속 이온의 제거특성

  • Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University) ;
  • Hyun, Sung-Su (Institute of Health & Environment, Jeju Special Self-Governing Province) ;
  • Lee, Min-Gyu (Department of Chemical Engineering., Pukyong National University)
  • 감상규 (제주대학교 환경공학과) ;
  • 현성수 (제주특별자치도 보건환경연구원) ;
  • 이민규 (부경대학교 화학공학과)
  • Received : 2011.08.22
  • Accepted : 2011.09.27
  • Published : 2011.10.31

Abstract

The removal performances of divalent heavy metal ions ($Pb^{2+}$, $Cu^{2+}$, $Cd^{2+}$, $Sr^{2+}$ and $Mn^{2+}$) were studied using the Na-P1 zeolite synthesized from Jeju scoria in the batch and continuous fixed column reactor. The uptakes of heavy metal ions by synthetic Na-P1 zeolite decreased in the order of $Pb^{2+}$ > $Cu2^{2+}$ > $Cd^{2+}$ > $Sr^{2+}$ > $Mn^{2+}$ based on the selectivity of each ion to ionic exchange site of Na-P1 zeolite for single and mixed solutions in batch or continuous fixed column reactor. For mixed solution, each heavy metal ion uptake was lower than that in single solution, and especially the uptake for $Mn^{2+}$ decreased greatly. In batch reactor, the uptakes of heavy metal ions by synthetic Na-P1 zeolite were described by Freundlich or Langmuir equation, but they followed the former better than the latter. In continuous fixed column reactor, the maximum ion exchange capacity obtained for each of heavy metal ions, was about 90----- of that in batch reactor. The uptakes of heavy metal ions by synthetic Na-P1 zeolite increased with the increase of initial heavy metal concentration and solution pH, and the decrease of the amount and particle size of synthetic zeolite.

Keywords

Scoria;Synthetic Na-P1 zeolite;Divalent heavy metals;Adsorption

References

  1. 송창수, 김두일, 정태학, 1998a, 천연제올라이트의 반복재생에 따른 암모늄 이온교환 특성, 한국물환경학회지, 14(3), 265-270.
  2. 송창수, 김희준, 정태학, 1998b, 천연제올라이트의 암모늄 이온교환에 미치는 입자 크기 및 온도영향에 관한 연구, 대한상하수도학회지, 12(3), 75-80.
  3. 오영한, 1999, 석탄 비산재로부터 제올라이트 A의 합성과 합성 제올라이트의 중금속 흡착 특성, 석사학위논문, 서울시립대학교.
  4. 유승웅, 송창수, 김두일, 이웅택, 정미홍, 정태학, 박기영, 이재우, 김희준, 1997, 오폐수 처리기술 : zeolite를 이용한 질소, 인의 동시제거 공정개발, 삼성건설기술연구소 1단계 2차년도 연차보고서, 환경부, 78.
  5. 유정근, 홍성창, 김인기, 고경민, 이시진, 1997, 석탄회의 중금속 흡착제어특성에 관한 연구, 화학공학의 이론과 응용, 1(2), 841-844.
  6. 윤정수, 1991, 북제주군 지역 기생화산(오름)에 관한 학술조사 보고서, 84.
  7. 전병은, 1999, 제주 송이로부터 제올라이트의 합성, 석사학위논문, 전북대학교 교육대학원.
  8. 전병은, 김미영, 안병준, 이민규, 감상규, 1999, 제주 송이로부터 Na-P1 제올라이트의 합성, 응용화학, 3(1), 397-400.
  9. 조영우, 1999, 제주 Scoria의 중금속 흡착특성, 석사학위논문, 제주대학교.
  10. Aiello, R., Colella, C., Di Lorenzo, A., 1980, Utilization of natural zeolites for pollutant removal in gaseous effluents. 1. Sulfur dioxide adsorption on chabazite tuff, Inquinamento, 22(5), 41-44.
  11. Bernal, M. P., Lopez-Real, J. M., 1993, Natural zeolites and sepiolite as ammonium and ammonia adsorbent materals, Biores. Technol., 43, 27-33. https://doi.org/10.1016/0960-8524(93)90078-P
  12. Kam, S. K., Kim, D. S., Lee, M. G., 1999, Comparison of removal performance of divalent heavy metals by natural and pretreated zeolites, J. Environ. Sci., 8(3), 399-409.
  13. Kam, S. K., Hong, J. Y., Hyun, S. S., Ahn, B. J., Lee, M. G., 2002, Removal of copper ion from wastewaters by Na-P1 synthesized from Cheju scoria, J. Environ. Sci., 11(1), 75-83, https://doi.org/10.5322/JES.2002.11.1.075
  14. Kam, S. K., Moon, M. J., Lee, D. W., Lee, M. G., 2003, Removal characteristics of strontium and cesium ions by zeolite synthesized from fly ash, J. Environ. Sci., 12(10), 1061-1069. https://doi.org/10.5322/JES.2003.12.10.1061
  15. Leppert, D., 1990, Heavy metal sorption with clinoptilolite zeolite: Alternatives for treating contaminated soil and water, Min. Eng., 42(6), 604-608.
  16. Loizidow, M., Haralambous, K. J., Loukatos, A., Dimitrakopoulou, D., 1992, Natural zeolites and their ion exchange behavior towards chromium, J. Environ. Sci. Health Part A, 27(7), 1759-1769. https://doi.org/10.1080/10934529209375824
  17. Mantell, C. L., 1951, Adsorption, McGraw-Hill, New York.
  18. Mimura, H., Tachibana, F., Akiba, K., 1992, Ion exchange selectivity for cesium in ferrierites, J. Nucl. Sci. Technol., 29(2), 184-186. https://doi.org/10.3327/jnst.29.184
  19. Page, A. L., 1985, Methods of Soil Analysis (2nd ed.), Part 2, Chemical and Microbiological Properties, Am. Soc. Agron. Inc., Soil Soc. Am. Inc., Madison. Wisconsin, USA.
  20. Pansini, M., Colella, C., Degennaro, M., 1991, Chromium removal from water by ion exchange using zeolite, Desalination, 83(1-3), 145-157. https://doi.org/10.1016/0011-9164(91)85091-8
  21. Sleijko, F. L., 1985, Adsorption Technology: A Step by Step Approach to Process Evaluation and Application, Marcel Dekker, New York.
  22. Zamzow, M. Z., Eichbaum, B. R., Sandgren, K. R., Shanks, D. E., 1990, Removal of heavy metals and other cations from wastewater using zeolites, Sep. Sci. Technol., 25(13-15), 1555-1569. https://doi.org/10.1080/01496399008050409
  23. Zhang, W. X., Yahifo, H., Mizuno, N., Izumi, J., Iwamoto, M., 1993, Removal of nitrogen monoxide on copper ion-exchanged zeolites by pressure swing adsorption, Langmuir, 9(9), 2337-2343. https://doi.org/10.1021/la00033a015

Cited by

  1. Analysis of Heavy Metal Contaminated Soils Remediation Using Reactive Drains vol.12, pp.1, 2013, https://doi.org/10.12814/jkgss.2013.12.1.029
  2. Isotherm, kinetic, and thermodynamic studies on the adsorption behavior of 10-deacetylpaclitaxel onto Sylopute vol.22, pp.5, 2017, https://doi.org/10.1007/s12257-017-0247-4
  3. Isotherm, Kinetic, and Thermodynamic Characteristics for Adsorption of 2,5-Xylenol onto Activated Carbon vol.23, pp.5, 2018, https://doi.org/10.1007/s12257-018-0259-8
  4. Adsorption Characteristics of Cu Ions by Zeolite Na-A Synthesized from Jeju Volcanic Rocks vol.27, pp.5, 2018, https://doi.org/10.5322/JESI.2018.27.5.299