DOI QR코드

DOI QR Code

Capture and Reduction Technology of Greenhouse Gas Using Membrane from Anaerobic Digester Gas

분리막을 이용한 혐기성 소화가스로부터 온실가스 회수저감 기술

  • Received : 2011.06.20
  • Accepted : 2011.08.17
  • Published : 2011.10.31

Abstract

The main objective of this experimental investigation was $CH_4$ recovery from biogas generated in municipal and wastewater treatment plant. The polysulfone hollow fiber membrane was prepared in order to investigate the permeation properties of $CH_4$ and $CO_2$. Permeability of $CO_2$ in Polysulfone membrane was 11-fold higher than of $CH_4$ gas. A membrane pilot plant for upgrading biogas was constructed and operated at a municipal wastewater treatment plant. The raw biogas contained 66 ~ 68 Vol % $CH_4$, the balance being mainly $CO_2$. The effect of the operating pressure of feed and permeate side and feed flowrate on $CH_4$ recovery concentration and efficiency were investigated with double stage membrane pilot plant. The $CH_4$ concentration in the retentate stream was raised in these tests to 93 Vol % $CH_4$.

Keywords

Biogas;Greenhouse gas;Polysulfone;Hollow fiber membrane;$CH_4$ recovery

Acknowledgement

Supported by : 한국환경산업기술원

References

  1. 이규현, 장재화, 1996, Membrane separation, 자유아카데미.
  2. 김재창, 김준모, 박진원, 왕수균, 이관영, 이영무, 이창하, 정석호, 홍원희, 2008, 이산화탄소포집 및 저장기술, 청문각.
  3. 임경택, 배도용, 신남철, 1996, 지구환경과학, 동화기술.
  4. 차진선, 2009, non-$CO_{2}$ 온실가스 기술개발 동향 및 전망, 환경정보, 31(382), 18-21.
  5. 한국대기환경학회, 2003, 환경 기초시설에서 발생하는 온실가스 배출량 조사.
  6. 환경부, 2010, 하수처리시설 에너지 독립선언-에너지자립화 기본계획.
  7. Ahn, J. S., Lee, S. M., 1996, A study on the separation characteristics of $CH_{4}-CO_{2}$ mixed gas by polyimide hollow fiber membrane, Hwahak konghak, 34(6), 675-682.
  8. An, Y. M., Kim, D. H., Jo, H. D., Seo, Y. S., Park, Y. S., Lee, H. K., 2009, The permeation behaviors of $H_{2}S/CH_{4}$ using polyimide hollow fiber membrane, Membrane J., 19(4), 261-267.
  9. Appels, L., Baeyens, J., Degreve, J., Dewil, R., 2008, Principles and potential of anaerobic digestion of waste activated sludge, Progress in Energy and Combustion Science, 34, 755-781. https://doi.org/10.1016/j.pecs.2008.06.002
  10. Barbari, T. A., Datwani, S. S., 1995, Gas separation properties of polysulfone membranes treated with molecular bromine, J. Membr. Sci., 107, 263-266. https://doi.org/10.1016/0376-7388(95)00122-0
  11. Harasimowicz, M., Orluk, P., Zakrzewska-Trznadel, G., Chmielewski, A. G., 2007, Application of polyimide membranes for biogas purification and nrichment, J. of Hazardous Materials, 144, 698-702. https://doi.org/10.1016/j.jhazmat.2007.01.098
  12. IEA Bioenergy, 2009, Biogas upgrading technologies developments and innovations.
  13. IPCC, 2007, Climate change 2007 : Synthesis report.
  14. Kim, J. H., Sohn, W. I., Choi, S. H., Lee, S. B., 2005, Preparation of asymmetric polyethersulfone hollow fiber membranes for flue gas separation, Membrane J., 15(2), 147-156.
  15. Kim, J. H., Hong, S. K., Park, S. J., 2007, Predictive thermodynamic model for gas permeability of gas separation membrane, Korean Chem. Eng. Res., 45(6), 619.
  16. Osoria, F., Torres, J. C., 2009, Biogas purification from anaerobic digestion in a wastewater treatment plant for biofuel production, Renewable Energy, 34, 2164-2171. https://doi.org/10.1016/j.renene.2009.02.023
  17. Park, H. B., Benny, D. F., 2007, Gas separation properties and their applications of high permeable amorphous perfluoropolymer membranes, Membrane J., 17(2), 81-92.
  18. Yoon, S. W., Lee, B. S., Lee, B. S., Cheong, S. I., Rhim, J. W., 2009, Gas permeation properties of sulfonated 6FDA-based polyimide membranes, Membrane J., 19(3), 237-243.