DOI QR코드

DOI QR Code

Adsorption Kinetic Study of Ruthenium Complex Dyes onto TiO2 Anodes for Dye-sensitized Solar Cells (DSSCs)

염료감응 태양전지용 루테늄 금속착체 염료의 이산화티타늄 전극에 대한 동적 흡착 연구

  • An, Byeong-Kwan (Department of Chemistry, The Catholic University of Korea)
  • Received : 2011.09.06
  • Accepted : 2011.10.10
  • Published : 2011.11.01

Abstract

The adsorption kinetic study of ruthenium complex, N3, onto nanoporous titanium dioxide ($TiO_2$) photoanodes has been carried out by measuring dye uptake in-situ. Three simplified kinetic models including a pseudo first-order equation, pseudo second-order equation and intraparticle diffusion equation were chosen to follow the adsorption process. Kinetic parameters, rate constant, equilibrium adsorption capacities and related coefficient coefficients for each kinetic model were calculated and discussed. It was shown that the adsorption kinetics of N3 dye molecules onto porous $TiO_2$ obeys pseudo second-order kinetics with chemisorption being the rate determining step. Additionally the heterogeneous surface and the pore size distribution of porous $TiO_2$ adsorbents were also discussed.

Acknowledgement

Supported by : 가톨릭대학교

References

  1. B. O'Regan and M. Gratzel, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  2. N. Robertson, Angew. Chem. Int. Ed., 45, 2338 (2006). https://doi.org/10.1002/anie.200503083
  3. P. Xie and F. Guo, Curr. Org. Chem., 11, 1272 (2007). https://doi.org/10.2174/138527207781696026
  4. M. Gratzel, Platinum Metals Rev., 38, 151 (1994).
  5. B. K. An, R. Mulherin, B. Langley, P. Burn, and P. Meredith, Org. Electron., 10, 1356 (2009). https://doi.org/10.1016/j.orgel.2009.07.017
  6. B. K. An, P. L. Burn, and P. Meredith, Chem. Mater., 21, 3315 (2009). https://doi.org/10.1021/cm900838b
  7. F. Roncaroli and M. A. Blesa, Phys. Chem. Chem. Phys., 12, 9938 (2010). https://doi.org/10.1039/c003086d
  8. H. Qiu, L. Lv, B. C. Pan, Q. J. Zhang, W. M. Zhang, and Q. X. Zhang, J. Zhejiang Univ. Sci., A10, 716 (2009).
  9. M. Ozacar, Adsorption, 9, 125 (2003). https://doi.org/10.1023/A:1024289209583
  10. M. Yalcin, A. Gurses, C. Dogar, and M. Sozbibir, Adsorption, 10, 339 (2004).
  11. S. R. Jang, C. Lee, H. Choi, J. J. Ko, J. Lee, R. Vittal, and K. J. Kim, Chem. Mater., 18, 5604 (2006). https://doi.org/10.1021/cm061447v
  12. M. Ozacar and İ. A. Şengil, Colloid Surf. A: Physicochem. Eng. Aspects, 242, 105 (2004). https://doi.org/10.1016/j.colsurfa.2004.03.029
  13. Z. Yaneva and B. Koumanova, J. Colloid Interface Sci., 293, 303 (2006). https://doi.org/10.1016/j.jcis.2005.06.069
  14. Y. S. Ho and G. McKay, Process Biochem., 34, 451 (1999). https://doi.org/10.1016/S0032-9592(98)00112-5
  15. M. Ozacar and I. A. Sengil, J. Environ. Manage., 80, 372 (2006). https://doi.org/10.1016/j.jenvman.2005.10.004
  16. R. Argazzi, C. A. Bignozzi, T. A. Heimer, F. N. Castellano, and G. J. Meyer, Inorg. Chem., 33, 5741 (1994).
  17. C. long, A. Li, H. Wu, and Q. Zhang, Colloid Surf. A: Physicochem. Eng. Aspects, 333, 150 (2009). https://doi.org/10.1016/j.colsurfa.2008.09.037
  18. S. Azizian, J. Colloid Interface Sci. 302, 76 (2006). https://doi.org/10.1016/j.jcis.2006.06.034
  19. A. L. Linsebigler, G. Lu, and J. T. Yates, Chem. Rev., 95, 735 (1995). https://doi.org/10.1021/cr00035a013