DOI QR코드

DOI QR Code

Electrical Properties of ZnO-Bi2O3-Co3O4 Varistor

ZnO-Bi2O3-Co3O4 바리스터의 전기적 특성

  • Hong, Youn-Woo (Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Hyo-Soon (Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Yeo, Dong-Hun (Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jin-Ho (School of Materials Science and Engineering, Kyungpook National University)
  • 홍연우 (한국세라믹기술원 미래융합세라믹본부) ;
  • 신효순 (한국세라믹기술원 미래융합세라믹본부) ;
  • 여동훈 (한국세라믹기술원 미래융합세라믹본부) ;
  • 김진호 (경북대학교 신소재공학부)
  • Received : 2011.10.11
  • Accepted : 2011.10.24
  • Published : 2011.11.01

Abstract

In this study, we have investigated the effects of Co doping on I-V curves, bulk trap levels and grain boundary characteristics of ZnO-$Bi_2O_3$ (ZB) varistor. From I-V characteristics the nonlinear coefficient (a) and the grain boundary resistivity (${\rho}_{gb}$) decreased as 32${\rightarrow}$22 and 18.4${\rightarrow}0.6{\times}10^9{\Omega}cm$ with sintering temperature (900~1,300$^{\circ}C$), respectively. Admittance spectra and dielectric functions show two bulk traps of zinc interstitial, $Zn_i^{{\cdot}{\cdot}}$(0.16~0.18 eV) and oxygen vacancy, $V_o^{{\cdot}}$ (0.28~0.33 eV). The barrier of grain boundaries in ZBCo (ZnO-$Bi_2O_3-Co_3O_4$) could be electrochemically single type. However, its thermal stability was slightly disturbed by ambient oxygen because the apparent activation energy of grain boundaries was changed from 0.93 eV at the 460~580 K to 1.13 eV at the 620~700 K. It is revealed that Co dopant in ZB reduced the heterogeneity of the barrier in grain boundaries and stabilized the barrier against the ambient temperature.

References

  1. D. R. Clarke, J. Am. Ceram. Soc., 82, 485 (1999).
  2. T. K. Gupta, J. Am. Ceram. Soc., 73, 1817 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05232.x
  3. K. Eda, IEEE Elec. Insulation. Mag., 5, 28 (1989).
  4. R. Einzinger, Ann. Rev. Mater. Sci., 17, 299 (1987). https://doi.org/10.1146/annurev.ms.17.080187.001503
  5. Y. W. Hong, Bull. KIEEME, 24, 3 (2011).
  6. F. Greuter and G. Blatter, Semicond. Sci. Technol., 5, 111 (1990). https://doi.org/10.1088/0268-1242/5/2/001
  7. M. Andres-Verges and A. R. West, J. Electroceram., 1, 125 (1997). https://doi.org/10.1023/A:1009906315725
  8. Y. W. Hong, H. S. Shin, D. H. Yeo, J. H. Kim, and J. H. Kim, J. KIEEME, 21, 738 (2008).
  9. Y. W Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 23, 368 (2010).
  10. Y. W Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 23, 942 (2010).
  11. Y. W Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 23, 936 (2010).
  12. Y. W Hong, H. S. Shin, D. H. Yeo, J. H. Kim, and J. H. Kim, J. KIEEME, 22, 941 (2009).
  13. H. R. Philipp, Materials Science Research, Tailoring Multiphase and Composite Ceramics (eds. R. E. Tressler, G. L. Messing, C. G. Pantano, and R. E. Newnham) (Prenum Press, New York/London, 1987) p. 481.
  14. R. Gerhardt, J. Phys. Chem. Solids, 55, 1491 (1994). https://doi.org/10.1016/0022-3697(94)90575-4
  15. Y. W. Hong and J. H. Kim, Ceram. Int., 30, 1307 (2004). https://doi.org/10.1016/j.ceramint.2003.12.026
  16. Y. W Hong, H. S. Shin, D. H. Yeo, J. H. Kim, and J. H. Kim, J. KIEEME, 22, 949 (2009).
  17. W. Cao and R. Gerhardt, Solid State Ionics, 42, 213 (1990). https://doi.org/10.1016/0167-2738(90)90010-O