DOI QR코드

DOI QR Code

Evaluation of Microstructure and Electrical Properties in (Na,K)NbO3-Based Pb-free Piezoelectrics Doped with Various Cu2O Concentration

(Na,K)NbO3계 무연 압전체에서 Cu2O 첨가물의 농도 변화에 따른 미세구조 및 전기적 특성 평가

  • Lee, Youn-Ki (Department of Materials Engineering/ReSEM, Chungju National University) ;
  • Ryu, Sung-Lim (Department of Materials Engineering/ReSEM, Chungju National University) ;
  • Kweon, Soon-Yong (Department of Materials Engineering/ReSEM, Chungju National University)
  • 이윤기 (충주대학교 신소재공학과/친환경에너지 부품소재센터) ;
  • 류성림 (충주대학교 신소재공학과/친환경에너지 부품소재센터) ;
  • 권순용 (충주대학교 신소재공학과/친환경에너지 부품소재센터)
  • Received : 2011.10.10
  • Accepted : 2011.10.24
  • Published : 2011.11.01

Abstract

The $(Na_{0.52}K_{0.44})(Nb_{0.9}Sb_{0.06})O_3-0.04dLiTaO_3$ (NKNS-LT) ceramics with various $Cu_2O$ concentration were prepared by the conventional solid state reaction method. The $Cu_2O$ content was varied in the range of 0.1~0.4 wt%. The effects of Cu on microstructure, crystallographic phase transition, and piezoelectric properties were investigated. The material with perovskite structure had a tetragonal phase (T1) when $Cu_2O$ concentration was less than 0.3 wt% and it transformed to another tetragonal phase (T2) when the $Cu_2O$ amount was greater than 0.3 wt%. The phase boundary between T1 and T2 phases appeared at around 0.3 wt% of $Cu_2O$ concentration. The piezoelectric properties were shown the maximum values at the composition of the phase boundary. The electro-mechanical coupling factor ($k_p$) was 0.42 and the piezoelectric charge constant ($d_{33}$) was 245 pC/N at the 0.3 wt% of $Cu_2O$ concentration.

References

  1. C. W. Ahn, H. Y. Park, S. Nahm, H. G. Lee, and H. J. Lee, Sensor. Actuat., A136, 255 (2007).
  2. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature, 432, 84 (2004).
  3. S. L. Ryu, K. H. Chung, J. H. Yoo, B. Y. Lee, and Y. H. Jeong, J. KIEEME, 18, 821 (2005).
  4. S. H. Lee, S. D. Baek, D. H. Lee, S. G. Lee, and Y. H. Lee, J. KIEEME, 24, 636 (2011).
  5. K. S. Lee and J. H. Yoo, J. KIEEME, 24, 728 (2011).
  6. H. Y. Park, J. Y. Choi, M. K. Choi, K. H. Cho, S. Nahm, H. G. Lee, and H. W. Kang, J. Am. Ceram. Soc., 91, 2374 (2008). https://doi.org/10.1111/j.1551-2916.2008.02408.x
  7. J. Fu, R. Zuo, X. Fang, and K. Liu, Mater. Res. Bull., 44, 1188 (2009). https://doi.org/10.1016/j.materresbull.2008.11.009
  8. IEEE Standards Board, IEEE Standards on Piezoelectricity, IEEE Standard, 176 (1978).
  9. E. Ringgaard and T. Wurlitzer, J. Eur. Ceram. Soc., 25, 2701 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.126
  10. Y. G. Lv, C. L. Wang, J. L. Zhang, and J. P. Xu, Mater. Res. Bull., 44, 284 (2009). https://doi.org/10.1016/j.materresbull.2008.06.019
  11. Standard test method for water absorption, bulk density, apparent porosity, and apparent specific gravity for fired whiteware products, ASTM, C373-72 (1994).
  12. J. F. Shackelford, Introduction to Materials Science for Engineers, 7th ed. (Prentice Hall, NJ, 2009) p. 27.