A Bisdesmosidic Cholestane Glycoside from the Rhizomes of Polygonatum sibiricum

  • Ahn, Mi-Jeong (College of Life Science & Natural Resources, Jinju National University) ;
  • Cho, Hee-Yeong (Pharmacology Research Center, Korea Research Institute of Chemical Technology) ;
  • Lee, Mi-Kyeong (College of Pharmacy, Chungbuk National University) ;
  • Bae, Ji-Yeong (College of Pharmacy and Research Institute of Life Sciences, Gyeongsang National University) ;
  • Choi, Jang-Gyoo (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Kim, Chul-Young (Natural Product Research Center, KIST Gangneung Institute) ;
  • Kim, Jin-Woong (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
  • Received : 2011.07.20
  • Accepted : 2011.08.20
  • Published : 2011.09.30

Abstract

A bisdesmosidic cholestane glycoside was isolated from the rhizomes of Polygonatum sibiricum and the structure was elucidated by spectroscopic methods and acid hydrolysis as (22S)-cholest-5-ene-$1{\beta}$,$3{\beta}$,$16{\beta}$,22-tetrol 1-O-${\alpha}$-L-rhamnopyranosyl 16-O-${\beta}$-D-glucopyranoside. This compound exhibited weak cytotoxic activity with the $IC_{50}$ value, $63.6\;{\mu}M$ in human MCF-7 breast cancer line, whereas it failed to show agonistic activity at $100{\mu}M$ in TGR5 assay with Chinese hamster ovary (CHO) cells. This is the first report of a bisdesmosidic cholestane glycoside from Polygonatum species and the full assignments of $^1H$, $^{13}C$ NMR by HMBC, TOCSY and NOESY experiments were provided.

Acknowledgement

Supported by : Jinju National University

References

  1. Anonymous, Dictionary of Chinese Medicinal Materials, Shanghai Scientific and Technological Press, Shanghai, Vol. 2, pp. 2041-2044, 1978.
  2. Agrawal, P.K., Jain, D.C., Gupta, R.K., and Thakur, R.S., Carbon-13 NMR spectroscopy of steroidal sapogenins and steroidal saponins. Phytochemistry 24, 2479-2496 (1985). https://doi.org/10.1016/S0031-9422(00)80653-6
  3. Agrawal, P.K., NMR Spectroscopy in the structural elucidation of oligosaccharides and glycosides. Phytochemistry 31, 3307-3330 (1992). https://doi.org/10.1016/0031-9422(92)83678-R
  4. Ahn, M.-J., Kim, C.Y., Yoon, K.D., Ryu, M.Y., Cheong, J.H., Chin, Y.W., and Kim, J., Steroidal Saponins from the Rhizomes of Polygonatum sibiricum. J. Nat. Prod. 69, 360-364 (2006). https://doi.org/10.1021/np050394d
  5. Atul, Tiwari. and Pranab, Maiti., TGR5: an emerging bile acid G-protein-coupled receptor target for the potential treatment of metabolic disorders. Drug Discov. Today 14, 523-530 (2009). https://doi.org/10.1016/j.drudis.2009.02.005
  6. Dai, H., Zhou, J., Deng, S., and Tan, N., Glycosides from Ophiopogon japonicas. Tianran Chanwu Yanjiu Yu Kaifa 12, 5-7 (2000).
  7. Fattorusso, E., Lanzotti, V., Taglialatela-Scafati, O., Rosa, M.D., and Ianaro, A., Cytotoxic saponins from bulbs of Allium porrum L. J. Agric. Food Chem. 48, 3455-3462 (2000). https://doi.org/10.1021/jf000331v
  8. Hara, S., Okabe, H., and Mihashi, K., Gas-Liquid Chromatographic Separation of Aldose Enantiomers as Trimethylsilyl Ethers of Methyl 2-(Polyhydroxyalkyl)-thiazolidine-4(R)-carboxylates. Chem. Pharm. Bull. 35, 501-507 (1987). https://doi.org/10.1248/cpb.35.501
  9. Higano, T., Kuroda, M., Sakagami, H., and Mimaki, Y., Convallasaponin A, a new 5-spirostanol triglycoside from the rhizomes of Convallaria majalis. Chem. Pharm. Bull. 55, 337-339 (2007). https://doi.org/10.1248/cpb.55.337
  10. Hirai, N., Miura, T., Moriyasu, M., Ichimaru, M., Nishiyama, Y., Ogura, K., and Kato, A., Cardiotonic activity of the rhizome of Polygonatum sibiricum in rats. Biol. Pharm. Bull. 20, 1271-1273 (1997). https://doi.org/10.1248/bpb.20.1271
  11. Kato, A. and Miura, T., Hypoglycemic action of the rhizomes of Polygonatum officinale in normal and diabetic mice. Planta Med., 60, 201-203 (1994). https://doi.org/10.1055/s-2006-959458
  12. Kato, A. and Miura, T., Hypoglycemic activity of Polygonati rhizome in normal and diabetic mice. Biol. Pharm. Bull. 16, 1118-1120 (1993). https://doi.org/10.1248/bpb.16.1118
  13. Liu, Y.P., Fu, G.F., and Cui, H., Current advances on pharmacological researches of Huang Jing, Yu Zhu and their preparations. Li Shizhen Medicine and Materia Medica Research 4, 371-373 (1998).
  14. Mimaki, Y., Kuroda, M., Fukasawa, T., and Sashida, Y., Steroidal Glycosides from the Bulbs of Allium jesdianum. J. Nat. Prod. 62, 194-197 (1999). https://doi.org/10.1021/np980346b
  15. Mimaki, Y., Yokosuka, A., and Sashida, Y., Steroidal glycosides from the aerial parts of Polianthes tuberose. J. Nat. Prod. 63, 1519-1523 (2000). https://doi.org/10.1021/np000230r
  16. Miura, T., Kato, A., Usami, M., Kadowaki, S., and Seino, Y., Effect of polygonati rhizome on blood glucose and facilitative glucose transporter isoform 2 (GLUT2) mRNA expression in Wistar fatty rats. Biol. Pharm. Bull. 18, 624-625 (1995). https://doi.org/10.1248/bpb.18.624
  17. Pols, T.W.H., Lilia, G.N., Nomura, M., Auwerxa, J., and Schoonjans, K., The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J. Hepatol. 54, 1263-1272 (2011). https://doi.org/10.1016/j.jhep.2010.12.004
  18. Sang, S., Xia, Z., Mao, S., Lao, A., and Chen, Z., Studies on chemical constituents in seed of Allium tuberosum Rottl. Zhongguo Zhongyao Zazhi 25, 286-288 (2000).
  19. Watanabe, M., Houten, S.M., Mataki, C., Christoffolete, M.A., Kim, B.W., Sato, H., Messaddeq, N., Harney, J.W., Ezaki, O., Kodama, T., Schoonjans, K., Bianco, A.C., and Auwerx, J., Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439, 484-489 (2006). https://doi.org/10.1038/nature04330
  20. Zheng, H.Z., Dong, Z.H., and She, J., Modernization of Traditional Chinese Medicine and Application, Xueyuan Press, Beijing, pp. 4071-4074, 1998.