DOI QR코드

DOI QR Code

Calculations of Free Energy Surfaces for Small Proteins and a Protein-RNA Complex Using a Lattice Model Approach

  • Received : 2011.03.19
  • Accepted : 2011.06.10
  • Published : 2011.08.20

Abstract

We calculate the free energy surfaces for two small proteins and a protein-RNA complex system by using a lattice model approach. In particular, we employ the Munoz-Eaton model, which is a native-structure based statistical mechanical model for studying protein folding problem. The model can provide very useful insights into the folding mechanisms by allowing one to calculate the free energy surfaces efficiently. We first calculate the free energy surfaces of ubiquitin and BBL, using both approximate and recently developed exact solutions of the model. Ubiquitin exhibits a typical two-state folding behavior, while BBL downhill folding in our study. We then extend the method to study of a protein-RNA complex. In particular, we focus on PAZ-siRNA complex. In order to elucidate the interplay between folding and binding kinetics for this system we perform comparative studies of PAZ only, PAZ-siRNA complex and two mutated complexes. We find that folding and binding are strongly coupled with each other and the bound PAZ is more stable than the unbound PAZ. Our results also suggest that the binding sites of the siRNA may serve act as a nucleus in the folding process.

Acknowledgement

Supported by : National Research Foundation of Korea, KISTI Supercomputing Center

References

  1. Roychaudhuri, R.; Yang, M.; Hoshi, M. M.; Teplow, D. B. J. Biol. Chem. 2009, 284, 4749. https://doi.org/10.1074/jbc.R800036200
  2. Sipe, J. D.; Cohen, A. S. J. Struct. Biol. 2000, 130, 88. https://doi.org/10.1006/jsbi.2000.4221
  3. Jackson, S. E.; Fersht, A. R. Biochemistry 1991, 30, 10428. https://doi.org/10.1021/bi00107a010
  4. Onuchic, J.; Luthey-Schulten, A.; Wolynes, P. G. Annu. Rev. Phys. Chem. 1997, 48, 545. https://doi.org/10.1146/annurev.physchem.48.1.545
  5. Plaxco, K. W.; Simos, K. T.; Baker, D. J. Mol. Biol. 1998, 277, 985. https://doi.org/10.1006/jmbi.1998.1645
  6. Lee, J.; Shin, S. Bull. Kor. Chem. Soc. 2008, 29, 741. https://doi.org/10.5012/bkcs.2008.29.4.741
  7. Lee. W.; Park. H.; Lee. S. Bull. Kor. Chem. Soc. 2008, 29, 363. https://doi.org/10.5012/bkcs.2008.29.2.363
  8. Urbanc, B.; Cruz, L.; Ding, F.; Sammond, D.; Khare, S.; Buldyrev, S. V.; Stanley, H. E.;Dokholyan, N. V. Biophys. J 2004, 87, 2310. https://doi.org/10.1529/biophysj.104.040980
  9. Schnabel, S.; Bachmann, B.; Janke, W. Phys. Rev. Lett. 2007, 98, 48103. https://doi.org/10.1103/PhysRevLett.98.048103
  10. Wako, H.; Saito, N. J. Phys. Soc. Japan 1978, 44, 1931. https://doi.org/10.1143/JPSJ.44.1931
  11. Wako, H.; Saito, N. J. Phys. Soc. Japan 1978, 44, 1939. https://doi.org/10.1143/JPSJ.44.1939
  12. Munoz, V.; Thompson, P. A.; Hofrichter, J.; Eaton, W. A. Nature(London) 1997, 390, 196. https://doi.org/10.1038/36626
  13. Imparato, A.; Pelizzola, A.; Zamparo, M. Phys. Rev. Lett. 2007, 98, 148102. https://doi.org/10.1103/PhysRevLett.98.148102
  14. Munoz, V.; Henry, E. R.; Hofrichter, J.; Eaton, W. A. Proc. Natl. Acad. Sci. USA 1998, 95, 5872. https://doi.org/10.1073/pnas.95.11.5872
  15. Zamparo, M.; Pelizzola, A. Phys. Rev. Lett. 2006, 97, 68106. https://doi.org/10.1103/PhysRevLett.97.068106
  16. Henry, E. R.; Eaton, W. A. J. Chem. Phys. 2004, 307, 163. https://doi.org/10.1016/j.chemphys.2004.06.064
  17. Munoz, V.; Eaton, W. A. Proc. Natl. Acad. Sci. USA. 1999, 96, 11311. https://doi.org/10.1073/pnas.96.20.11311
  18. Bruscolini, P.; Pelizzola, A. Phys, Rev, Lett. 2002, 88, 258101. https://doi.org/10.1103/PhysRevLett.88.258101
  19. Vijay-Kumar, S.; Bugg, C. E.; Cook, W. J. J. Mol Biol. 1987, 194, 531. https://doi.org/10.1016/0022-2836(87)90679-6
  20. Jackson, S. E. Org. Biomol. Chem. 2006, 4, 1845. https://doi.org/10.1039/b600829c
  21. Grater, F.; Grubmuller, H. J. Struct. Biol. 2007, 157, 557. https://doi.org/10.1016/j.jsb.2006.11.005
  22. Krantz, B. A.; Sosnick, T. R. Biochemistry 2000, 39, 11696. https://doi.org/10.1021/bi000792+
  23. Went, H. M.; Benitez-Cardoza, C. B.; Jackson, S. E. FEBS Lett. 2004, 567, 333. https://doi.org/10.1016/j.febslet.2004.04.089
  24. Packman, L. C.; Perham, R. N. FEBS Lett. 1986, 206, 193. https://doi.org/10.1016/0014-5793(86)80979-6
  25. Garcia-Mira, M. M.; Sadqi, M.; Fischer, N.; Sanchez-Ruiz, J. M.; Muoz, V. Science 2002, 298, 2191. https://doi.org/10.1126/science.1077809
  26. Ma, J. B.; Ye, K.; Patel, D. J. Nature 2004, 429, 318. https://doi.org/10.1038/nature02519
  27. Hai-Feng, C. J. Chem. Theory Comput. 2008, 4, 1360. https://doi.org/10.1021/ct800030s

Cited by

  1. A Minimalist Model of Single Molecule Spectroscopy in a Dynamic Environment Studied by Metadynamics vol.33, pp.3, 2012, https://doi.org/10.5012/bkcs.2012.33.3.980