Distribution Analysis of the Local Critical Temperature and Current Density in YBCO Coated Conductors using Low-temperature Scanning Laser and Hall Probe Microscopy

저온 주사 레이저 및 홀소자 현미경을 이용한 YBCO 초전도 선재의 국소적 임계 온도 및 전류 밀도 분포 분석

  • Park, S.K. (Department of Physics, Kyungpook National University) ;
  • Cho, B.R. (Department of Physics, Kyungpook National University) ;
  • Park, H.Y. (Department of Physics, Kyungpook National University) ;
  • Ri, H.C. (Department of Physics, Kyungpook National University)
  • Received : 2011.07.07
  • Accepted : 2011.08.16
  • Published : 2011.08.31

Abstract

Distribution of the local critical temperature and current density in YBCO coated conductors were analyzed using Low-temperature Scanning Laser and Hall Probe Microscopy (LTSLHPM). We prepared YBCO coated conductors of various bridge types to study the spatial distribution of the critical temperature and the current density in single and multi bridges. LTSLHPM system was modified for detailed linescan or two-dimensional scan both scanning laser and scanning Hall probe method simultaneously. We analyzed the local critical temperature of single and multi bridges from series of several linescans of scanning laser microscopy. We also investigated local current density and hysteresis curve of single bridge from experimental results of scanning Hall probe microscopy.

References

  1. G. W. Crabtree, J. Z. Liu, A. Umezawa, W. K. Kwon, C. H. Sowers, S. K. Malik, B. W. Veal, D. J. Lam, M. B. Brodsky, and J. W. Downey, Phys. Rev. B, vol. 36, pp. 4021-4024 (1987). https://doi.org/10.1103/PhysRevB.36.4021
  2. L. J. Swartzendruber, A. Roitburd, D. L. Kaiser, F. W. Gayle, and L. H. Bennett, Phys. Rev. Lett., vol. 64, pp. 483-486 (1990). https://doi.org/10.1103/PhysRevLett.64.483
  3. R. Gross, D. Koelle, Rep. Prog. Phys. 57 651 (1994). https://doi.org/10.1088/0034-4885/57/7/001
  4. T. Kiss, M. Inoue, T. Shoyama, S. Koyanagi, D. Mitsui, and T. Nakamura, IEEE. Trans. on Appl. Supercond., vol. 17(2), 3211-3214 (2007). https://doi.org/10.1109/TASC.2007.898922
  5. R. Gross, M. Hartmann, K. Hipler, R. P. Huebener, F. Kober, and D. Koelle, IEEE. Trans. on Magnetics, vol. 25, 2250 (1989). https://doi.org/10.1109/20.92756
  6. T. Kiss, M. Inoue, M. Yasunaga, H. Tokutomi, Y. Iijima, K. Kakimoto, T. Saitoh, Y. Tokunaga, T. Izumi, and Y. Shiohara, IEEE. Trans. on Appl. Supercond., vol. 15, 3656 (2005). https://doi.org/10.1109/TASC.2005.849385
  7. L. B. Wang, M. B. Price, C. Kwon, and Q. X. Jia, IEEE. Trans. on Appl. Supercond., vol. 13, 2611 (2003). https://doi.org/10.1109/TASC.2003.811908
  8. L. B. Wang. M. B. Price, J. L. Young, C. Kwon, Timothy J. Haugen, Paul N. Barnes, Physica C 405 240-244 (2004). https://doi.org/10.1016/j.physc.2004.02.003
  9. S. K. Park, J. M. Kim, S. B. Lee, S. H. Kim, G. Y. Kim, H. -C. Ri, Cryogenics 51 241-246 (2011). https://doi.org/10.1016/j.cryogenics.2010.06.004
  10. Clem J R and Huebener R P J. Appl. Phys. 51 2764 (1980). https://doi.org/10.1063/1.327939
  11. T. H. Johansen, M. Baziljevich, H. Bratsberg, and Y. Galperin, Phys. Rev. B, vol. 54, pp. 264-269 (1996).
  12. A Crisan, A Pross, R G Humphreys and S Bending, Supercond. Sci. Technol. 16 695-698 (2003). https://doi.org/10.1088/0953-2048/16/6/307