DOI QR코드

DOI QR Code

QTL Scan for Meat Quality Traits Using High-density SNP Chip Analysis in Cross between Korean Native Pig and Yorkshire

  • Kim, S.W. ;
  • Li, X.P. ;
  • Lee, Y.M. ;
  • Choi, Y.I. ;
  • Cho, B.W. ;
  • Choi, B.H. ;
  • Kim, T.H. ;
  • Kim, J.J. ;
  • Kim, Kwan-Suk
  • Received : 2011.02.09
  • Accepted : 2011.04.18
  • Published : 2011.09.01

Abstract

We attempted to generate a linkage map using Illumina Porcine 60K SNP Beadchip genotypes of the $F_2$ offspring from Korean native pig (KNP) crossed with Yorkshire (YS) pig, and to identify quantitative trait loci (QTL) using the line-cross model. Among the genotype information of the 62,136 SNPs obtained from the high-density SNP analysis, 45,308 SNPs were used to select informative markers with allelic frequencies >0.7 between the KNP (n = 16) and YS (n = 8) F0 animals. Of the selected SNP markers, a final set of 500 SNPs with polymorphic information contents (PIC) values of >0.300 in the $F_2$ groups (n = 252) was used for detection of thirty meat quality-related QTL on chromosomes at the 5% significance level and 10 QTL at the 1% significance level. The QTL for crude protein were detected on SSC2, SSC3, SSC6, SSC9 and SSC12; for intramuscular fat and marbling on SSC2, SSC8, SSC12, SSC14 and SSC18; meat color measurements on SSC1, SSC3, SSC4, SSC5, SSC6, SSC10, SSC11, SSC12, SSC16 and SSC18; water content related measurements in pork were detected on SSC4, SSC6, SSC7, SSC10, SSC12 and SSC14. Additional QTL of pork quality traits such as texture, tenderness and pH were detected on SSC6, SSC12, SSC13 and SSC16. The most important chromosomal region of superior pork quality in KNP compared to YS was identified on SSC12. Our results demonstrated that a QTL linkage map of the $F_2$ design in the pig breed can be generated with a selected data set of high density SNP genotypes. The QTL regions detected in this study will provide useful information for identifying genetic factors related to better pork quality in KNP.

Keywords

Illumina Porcine 60K SNP Beadchip;QTL;Meat Quality;Korean Native Pig;Yorkshire Pig

References

  1. Andersson, L., C. S. Haley, H. Ellegren, S. A. Knott, M. Johansson, K. Andersson, L. Andersson-Eklund, I. Edfors-Lilja, M. Fredholm and I. Hansson. 1994. Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science 263:1771-1774. https://doi.org/10.1126/science.8134840
  2. Alfonso, L. and C. S. Haley. 1998. Power of different F2 schemes for QTL detection in livestock. Anim. Sci. 66:1-8. https://doi.org/10.1017/S135772980000878X
  3. Bidanel, J. P. and M. Rothschild. 2002. Current status of quantitative trait locus mapping in pigs. Pig News and Information 23(2):39-53.
  4. Cameron, N. D., M. Enser, G. R. Nute, F. M. Wittington, J. C. Penman, A. C. Fisken, A. M. Perry and J. D. Wood. 2000. Genotype with nutrition interaction on fatty acid composition of intramuscular fat and the relationship with flavour of pig meat. Meat Sci. 55:187-195. https://doi.org/10.1016/S0309-1740(99)00142-4
  5. Cho, S. H., B. Y. Park, J. H. Kim, M. J. Kim, P. N. Seong, Y. J. Kim, D. H. Kim and C. N. Ahn. 2007. Carcass yields and meat quality by live weight of Korean native black pigs. Korea J. Anim. Sci. Technol. 49:523-530. https://doi.org/10.5187/JAST.2007.49.4.523
  6. Choi, B. W., H. Y. Lee, K. C. Hong, I. C. Cheong and T. H. Kim. 2004. Identification of quantitative trait loci (QTL) for meat color trait on chromosome 7 in pig. Korea J. Anim. Sci. Technol. 46:525-536. https://doi.org/10.5187/JAST.2004.46.4.525
  7. Choi, Y. S., B. Y. Park, J. M. Lee and S. K. Lee. 2005. Comparison of carcass and meat quality characteristics between Korean native black pigs and commercial crossbreed pigs. Korean J. Food Sci. 25:322-327.
  8. De Koning, D. J., B. Harlizius, A. P. Rattink, M. A. Groenen, E. W. Brascamp and J. A. van Arendonk. 2001. Detection and characterization of quantitative trait loci for meat quality traits in pigs. J. Anim. Sci. 79(11):2812-2819.
  9. Dekkers, J. C. M. 2004. Commercial application of marker- and gene-assisted selection in livestock: Strategies and lessons. J. Anim. Sci. 82:313-328.
  10. DeVol, D. L., F. K. McKeith, P. S. Bechtel, J. Novakofski, R. D. Shanks and T. R. Carr. 1988. Variation in composition and palatability traits and relationships between muscle characteristics and palatability in a random sample of pork carcasses. J. Anim. Sci. 66:385-395.
  11. Edwards, D. B., C. W. Ernst, N. E. Raney, M. E. Doumit, M. D. Hoge and R. O. Baret. 2007. Quantitative trait locus mapping in an F2 Duroc×Pietrain resource population: II. Carcass and meat quality traits. J. Anim. Sci. 86:254-266. https://doi.org/10.2527/jas.2006-626
  12. Edwards, D. B., C. W. Ernst, R. J. Tempelman, G. J. Rosa, N. E. Raney, M. D. Hoge and R. O. Bates. 2008. Quantitative trait loci mapping in an F2 Duroc×Pietrain resource population: I. Growth traits. J. Anim. Sci. 86:241-253.
  13. Eikelenboom, G., A. H. Hoving-Bolink and P. G. Vander Wal. 1996. The eating quality of pork. The influence of intramuscular fat. Fleischwirtsch. Internat. 5:559-560.
  14. Fan, B., S. K. Onteru, D. Garrick, K. J. Stalder and M. F. Rothschild. 2009. A genome-wide association study for pig production and feet and leg structure traits using the PorcineSNP60 BeadChip. Pig Genome III Conference, November 2-4, 2009, Hinxton, Cambridge, UK. Abstract No. 6.
  15. Geldermann, H., E. Muller, G. Moser, G. Reiner, H. Bartenschlager, S. Cepica, A. Stratil, J. Kuryl, C. Moran, R. Davoli and C. Brunsch. 2003. Genomewide linkage and QTL mapping in porcine F2 families generated from Pietrain, Meishan and Wild Boar crosses. J. Anim. Breed. Genet. 120:363-393. https://doi.org/10.1046/j.0931-2668.2003.00408.x
  16. Green, P., K. Fallis and S. Crooks. 1996. Documentation for CRIMAP version 2.4, Washington University School of Medicine, St. Louis, MO.
  17. Grindflek, E., J. Szyda, Z. Liu and S. Lien. 2001. Detection of quantitative trait loci for meat quality in a commercial slaughter pig cross. Mamm. Genome 12(4):299-304. https://doi.org/10.1007/s003350010278
  18. Gorbach, D. M., W. J. Cai, C. M. Dekkers, J. M. Young and D. J. Garrick. 2009. Whole-genome analyses for genes associated with residual feed intake and related traits utilizing the PorcineSNP60 BeadChip. Pig Genome III Conference. November 2-4. Hinxton, UK. Abstract No. 11.
  19. Haley, C. S. and S. A. Knott. 1994a. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:215-324.
  20. Haley, C. S., S. A. Knott and J. M. Elsen. 1994b. Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics 136:1195-1207.
  21. Huff-Lonergan, E., T. J. Baas, M. Malek, J. C. Dekkers, K. Prusa and M. F. Rothschild. 2002. Correlations among selected pork quality traits. J. Anim. Sci. 80:617-627.
  22. Jiang, X. P., Y. Z. Xiong, C. Y. Deng and G. Q. Qu. 2002. Detection of quantitative trait loci for protein percentage in muscle in resource pig population. Acta Genetica Sinica. 30:1107-1112.
  23. Jin, S. K., I. S. Kim, S. J. Hur, K. H. Hah and B. W. Kim. 2005. Physico-chemical characteristics with market weight in Korean native and landrace crossbred pigs. Korean J. Intl. Agri. 17:182-187.
  24. Jin, S. K., I. S. Kim, S. J. Hur, S. J. Kim and K. J. Jeong. 2006. The influence of pig breeds on qualities of loin. Korea J. Anim. Sci. Technol. 48:747-758. https://doi.org/10.5187/JAST.2006.48.5.747
  25. Kim, J. J., H. Zhao, H. Thomsen, M. F. Rothschild and J. C. M. Dekkers. 2005. Combined line-cross and half-sib QTL analysis of crosses between outbred lines. Genet. Res. 85:235-248. https://doi.org/10.1017/S0016672305007597
  26. Kim, S. W., J. G. Roh, Y. I. Cho, B. H. Choi, T. H. Kim, J. J. Kim and K. S. Kim. 2010. Development of Optimal Breeding Pigs Using DNA Marker Information. Genomics Inform. 8:81-85. https://doi.org/10.5808/GI.2010.8.2.081
  27. Kranen, R. W., T. H. Van Kuppevelt, H. A. Goedhart, C. H. Veerkamp, E. Lambooy and J. H. Veerkamp. 1999. Hemoglobin and myoglobin content in muscles of broiler chickens. Poult. Sci. Mar. 78:467-476. https://doi.org/10.1093/ps/78.3.467
  28. Li, X., C. K. Lee, B. W. Choi, T. H. Kim, J. J. Kim and K. S. Kim. 2010. Quantitative gene expression analysis on chromosome 6 between Korean native pigs and Yorkshire breeds for fat deposition. Genes Genom. 32:385-393. https://doi.org/10.1007/s13258-010-0009-6
  29. Malek, M., J. C. M. Dekker, H. K. Lee, T. J. Baas, K. Prusa, E. Huff-Lanergan and M. F. Rothschild. 2000. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. II. Meat and muscle composition. Mamm. Genome 8:328-332.
  30. Mancini, R. A. and M. C. Hunt. 2005. Current research in meat color. Meat Sci. 71:100-121. https://doi.org/10.1016/j.meatsci.2005.03.003
  31. Naomi, D., F. K. Egbert, W. M. Jan, P. C. Richard, A. G. Martien, B. Henk and H. Barbara. 2010. A Genome-wide association study on androstenone levels in pigs reveals a cluster of candidate genes on chromosome 6. BMC Genet. 20:11-42.
  32. Nii, M., T. Hayashi, S. Mikawa, F. Tani, A. Niki, N. Mori, Y. Uchida, N. Fujishima-Kanaya, M. Komatsu and T. Awata. 2005. Quantitative trait loci mapping for meat quality and muscle fiber traits in a Japanese wild boar×Large White intercross. J. Anim. Sci. 83:308-315.
  33. Oh, H. S., H. Y. Kim, H. S. Yang, J. I. Lee, Y. K. Joo and C. U. Kim. 2008. Comparison of meat quality characteristics between crossbreeds. Korean J. Food Sci. 28:171-180. https://doi.org/10.5851/kosfa.2008.28.2.171
  34. Ovilo, C., A. Clop, J. L. Noguera, M. A. Oliver, C. Barragan, C. Rodriguez, L. Silio, M. A. Toro, A. Coll, J. M. Folch, A. Sanchez, D. Babot, L. Varona and M. Perez-Enciso. 2002. Quantitative trait locus mapping for meat quality traits in an Iberian×Landrace F2 pig population. J. Anim. Sci. 80(11): 2801-2808.
  35. Onteru, S. K., B. Fan, D. Garrick, K. J. Stalder and Rothschild. M. F. 2009. Whole genome analyses for pig reproductive traits using the PorcineSNP60 BeadChip. Pig Genome III Conference. November 2-4, 2009, Hinxton, Cambridge, UK. Abstract No. 5.
  36. Paszek, A. A., P. J. Wilkie, G. H. Flickinger, L. M. Miller, C. F. Louis, G. A. Rohrer, L. J. Alexander, C. W. Beattie and L. B. Schook. 2001. Interval mapping of carcass and meat quality traits in a divergent swine cross. Anim. Biotechnol. 12(2):155-165. https://doi.org/10.1081/ABIO-100108342
  37. Sellner, E. M., J. W. M. Kim, C. McClure, K. H. Taylor, R. D. Schnabel and J. F. Taylor. 2007. Board-invited review: Application of genomic information in livestock. J. Anim. Sci. 85:3148-3158. https://doi.org/10.2527/jas.2007-0291
  38. Van der Wal, P. G., B. Engel and B. Hulsegge. 1997. Causes for variation in pork quality. Meat Sci. 46:319-327. https://doi.org/10.1016/S0309-1740(97)00026-0
  39. Wimmers, K., I. Fiedler, T. Hardge, E. Murani, K. Schellander and S. Ponsuksili. 2006. QTL for microstructural and biophysical muscle properties and body composition in pigs. BMC Genet. 7:15.

Cited by

  1. Porcine insulin-like growth factor 1 (IGF1) gene polymorphisms are associated with body size variation vol.35, pp.4, 2013, https://doi.org/10.1007/s13258-013-0098-0
  2. Identification of SNPs Affecting Porcine Carcass Weight with the 60K SNP Chip vol.55, pp.4, 2013, https://doi.org/10.5187/JAST.2013.55.4.231
  3. Effects of Crossbreeding and Gender on the Carcass Traits and Meat Quality of Korean Native Black Pig and Duroc Crossbred vol.27, pp.7, 2014, https://doi.org/10.5713/ajas.2013.13734
  4. Genetic Structure of and Evidence for Admixture between Western and Korean Native Pig Breeds Revealed by Single Nucleotide Polymorphisms vol.27, pp.9, 2014, https://doi.org/10.5713/ajas.2014.14096
  5. Length polymorphism in OGT between Korean native pig, Chinese Meishan, and the Western pig breeds vol.57, pp.1, 2015, https://doi.org/10.1186/s40781-015-0045-5
  6. Identification and characterization of novel single nucleotide polymorphism markers for fat deposition in muscle tissue of pigs using amplified fragment length polymorphism vol.30, pp.3, 2016, https://doi.org/10.5713/ajas.16.0200
  7. Identification of differentially expressed genes in longissimus muscle of pigs with high and low intramuscular fat content using RNA sequencing vol.48, pp.2, 2016, https://doi.org/10.1111/age.12518