DOI QR코드

DOI QR Code

Effect of Dietary Cracked Whole Barley on the Meat Compositional Properties of Hanwoo Steer Loin Beef

분쇄 통보리 급여 수준이 거세한우의 등심부위의 성분 조성에 미치는 영향

  • Lee, Sang-Moo (School of Animal Science and Biotechnology, Kyung-Pook National University) ;
  • Son, Je-Ik (School of Animal Science and Biotechnology, Kyung-Pook National University)
  • Received : 2011.05.26
  • Accepted : 2011.07.29
  • Published : 2011.08.31

Abstract

This study was carried out to investigate the effects of the feeding level of cracked whole barley (CWB) on fatty acid composition, free amino acid content, organic acid content, pH, HDL cholesterol, total phenol and DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity of finishing Hanwoo steers. The dietary treatments were consisted of five types (C: base feed + 0% CWB, T1: base feed + 10% CWB, T2: base feed + 20% CWB, T3: base feed + 30% CWB, T4: base feed + 40% CWB). A total 30 Hanwoo steers(588.6${\pm}$11.8kg) were allocated into 5 feeding groups, and a total of thirty Hanwoo steers raised from 24 to 30 months. Linoleic acid of fatty acid composition was significantly higher for cracked CWB treatments (T1, T2, T3, and T4) than C, and T3 of CWB treatments was the highest than the other treatments (P<0.01). SFA, USFA, MUFA and USFA/SFA did not differ among the treatments. On the contrary, PUFA was significantly higher for CWB treatments(T1, T2, T3, and T4) than C, and T3 was the highest (P<0.05). EAA was higher in the order of T1 > T2 > C > T3 > T4 (P<0.05). NEAA was higher in the order of T2 >T3 >T1 >C >T4, although a statistical significance was not detected. The total organic acid content was the highest for T3 (20.15 mg/100g) and the lowest for T2 (13.19mg/100g). pH and total phenol of all treatments were did not differ. HDL cholesterol was higher in the order of T1 > C > T4 > T2 > T3 (P<0.01). DPPH radical scavenging activity was in order of T1 > T2 >T4 > C > T3 (P<0.01). Based on the above results, T1 treatment compared to other treatments have been shown to improve EAA, DHL, and DPPH radical scavenging activity.

Keywords

Hanwoo;Barley;Fatty acid;Free amino acid;Organic acid

Acknowledgement

Supported by : 구미시

References

  1. Bacis, A. and Stone, B. A. 1981. Chemistry and organization of aleurone cell wall components from wheat and barley. Aust. J. Plant Physiol. 8:475. https://doi.org/10.1071/PP9810475
  2. Blois, M. S. 1958. Antioxidant determinations by the use of a stable free radical. Nature. 4617:1199-1200.
  3. Chang, S. S., Hong, S. K., Lee, B. S., Cho, Y. M., Kwon, E. K., Paek, B. H. and Song, M. K. 2006. Effects of feeding levels of barley grains on growth performance and carcass characteristics of Hanwoo bulls. Korean J. Anim. Sci. Technol. 48:247-254. https://doi.org/10.5187/JAST.2006.48.2.247
  4. Chang, S. S., Oh, Y. K., Kim, K. H., Hong, S. K., Kwon, E. G., Cho, Y. M. Cho, W. M., Eun, J. S., Lee, S. C., Choi, S. H. and Song, M. K. 2007. Effects of dietary barley on the growth performance and carcass characteristics in Hanwoo steers. Korean J. Anim. Sci. Technol. 49:801-818. https://doi.org/10.5187/JAST.2007.49.6.801
  5. Choi, C. W. 2007. Diurnal patterns in the flow of escapable soluble non-ammonia nitrogen fraction in omasal digesta as influenced by barley and rapeseed meal supplementation in cow fed grass silage based diet. Korean J. Anim. Sci. Technol. 49:341-350. https://doi.org/10.5187/JAST.2007.49.3.341
  6. Deobald, H. J. 1964. The effect of antioxidants and synergists on the stability of precooked dehydrated sweetpoiato flakes. Food tech. December. p146-151.
  7. De Visser, H. and de Groot, A. M. 1980. The influence of the starch and sugar content of concentrations on feed intake, rumen fermentation, production and composition of milk. Proceedings of disease farm animals, Munich, Germany. Fotodruck Frank OHG. p 41.
  8. Fadel, J. G., Newman, R. K., Newman, C. W. and Barnes, A. E. 1987. Hypo-cholesterol effects of $\beta$gluc ans in different barley diets fed to broiler chicks. Nutr. Rep. Int. 35:1049.
  9. Fincher, G. B. 1975. Morphology and chemical composition of barley endosperm cell walls. J. Inst. Brew. 81:116-122. https://doi.org/10.1002/j.2050-0416.1975.tb03672.x
  10. Folch, J., Lee, M. and Stanly, G. H. S. 1957. Simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497-509.
  11. Ishida, T., Kurihara, M., Arata, N., Nishida, T., Purnomoadi, A., Aoki, M., Tanaka, Y., Kohno, Y., Abe, A. and Takeshi, I. 1997. Comparative feeding values of whole-shelled or whole steam-rolled corn and whole-shelled or whole steam-rolled barley for dairy cattle. Japan National Institute of Animal Industry Res. 58:9-10.
  12. Jo, K. S. and Park, Y. H. 1985. Studies on the orgaic acids composition in shellfishes. Bull. Korean Fish. Soc. 18:227-234.
  13. Kang, S. J., Kim, M. S., Yang, J. B., Jung, I. C. and Moon, Y. H. 2001. Quality comparison of lion muscles from carcass of grade B2 and D. Korean J. Food Sci. Ani. Resour. 21:329-336.
  14. Kang, S. N., Jang, A., Lee S, O., Min, J. S. and Lee, M. H. 2002. Effect of organic acid on value of VBN, TBARS, color and sensory property of pork meat. Korean J. Anim. Sci. Technol. 44: 443-452. https://doi.org/10.5187/JAST.2002.44.4.443
  15. Kim, B. K. and Go, S. J. 2005. Effect of clay mineral pegmatite and vitamin A and supplements on the physic-chemical characteristics of fattening hanwoo steers. Korean J. Food Sci. Ani. Resour. 25:156-161.
  16. Kim, B. K. and Kim, Y. J. 2005. Effect of supplemental charcoal power and vitamin A on the physic-chemical characteristics in fattening Hanwoo steers. Korean J. Food Sci. Ani. Resour. 25:32-38.
  17. Kim, J. H., Cho, S. H., Seong, P. N., Hah, K. H., Kim, H. K., Park, B. Y., Lee J. M. and Ahn, C. N. 2007. Effect of ageing temperature and time on the meat quality of longissimus muscle from Hanwoo steer. Korean J. food Sci. Ani. Resour. 27:171-178. https://doi.org/10.5851/kosfa.2007.27.2.171
  18. Lee S. M., Kang, T. W., Lee, S. J., Ok, J. U., Moon, Y. H. and Lee S. S. 2006. Studies on In Situ and In vitro degrade abilities microbial growth and gas production of rice, barley and corn. Korean J. Anim. Sci. Technol. 48:699-708. https://doi.org/10.5187/JAST.2006.48.5.699
  19. Lee, Y. J., Kim, C. J., Kim, J. H., Park, B. Y., Seong, P. N., Kang, G. H., Kim, D. H. and Cho, S. H. 2010. Comparison of fatty acid composition of Hanwoo beef by different quality grades and cuts. Korean J. Food Sci. Ani. Resour. 30: 110-119. https://doi.org/10.5851/kosfa.2010.30.1.110
  20. Lee, Y. T. 1996. Physicochemical characteristics and physiological functions of $\beta$-glucans in barley and oats. Korean J. Crop Sci. 41:10-24.
  21. Mitsuru, M, sinobu, O, Tadayoshi, M. and Yoshiro, Y. 1988. The influence of finish weight, sires and kinds of concentrate during the latter fattening period on the carcass characteristics of Japanese Black steers. Japn. J. Zootech. Sci. 60(4):351-358.
  22. Morishita, M., Takizawa, H. and Matsui, M. 2003. The feeding effect of the growth whole corn under condition fed large amount of barley on fattening performance and meat quality in cross-bred heifers. Japan Bull. Aichi Agric. Res. Ctr. 35:155-160.
  23. Oohashi, H., Takizawa, H., Morita, H., Nagase, M. and Naruse, M. 1998. Relation between property of fat and meat quality of beef cattle. Japan Res. Bull. Aichi Agric. Res. 30, 281-288.
  24. Penet, C. S., Worthington, R. E., Phillips, R. D. and Moon, N. J. 1980. Free amino acids of raw and cooked ground beef and pork. J. Food Sci. 48: 298.
  25. Qureshi, A. A., Burgerm, W. C., Peterson, D. M. and Elson, C. E. 1986. The structure of an inhibitor of cholesterol biosynthesis isolated from barley. J. Bio. Chem. 261:10544.
  26. SAS. 2002. SAS user's guide; Statistics. SAS Inst. Inc. NC. USA.
  27. Selke, E., Rohwedder, W. K. and Dutton, H. J. 1977. Volatile components from triolean heated in air. J. Am. Oil. Chem. Soc. 54:62. https://doi.org/10.1007/BF02912391
  28. Seo, Y. H., Kim, I. J., Yie, A. S. and Min, H. K. 1999. Electron donating ability and contents of phenolic compounds, tocopherols and carotenoids in waxy corn (Zea mays L.). Korean J. Food Sci. Technol. 31:581-585.
  29. Seog, H. M., Seo, M. S., Kim, S. R., Park, Y. K. and Lee, Y. T. 2002. Characteristics of barley polyphenol extract(BPE) separated from pearling by-products. Korean J. Food Sci. Technol. 34:775-779.
  30. Stone, B. A. 1986. Cell walls and their components in cereal grain technology. Am. Assoc. Cereal Chem. St. Paul Minnesota. 8:116-122.
  31. Takizawa, H., Oohashi, H., Morita, H., Nagase, M. and Naruse, M. 1998. Effect barley and corn feeding on fattening performance and meat quality from cross-breed (Japanese black $\times$ Holstein) steers. Japan Res. Bull. Aichi Agric. Res. 30:289-293.

Cited by

  1. Effects of Chrysanthemum boreale Probiotic on Growth Performance and Meat Quality of Hanwoo Steer vol.48, pp.5, 2014, https://doi.org/10.14397/jals.2014.48.5.85