DOI QR코드

DOI QR Code

Effect of Fermented Brown Seaweed Waste (FBSW) on in vitro Rumen Microbial Fermentation

발효 미역부산물이 반추위 발효특성에 미치는 영향

  • Hong, Zhong-Shan (Department of Animal science & Technology, Tianjin Agricultural University) ;
  • Lee, Hong-Gu (Department of Animal Science, Pusan National University) ;
  • Lee, Zhe-Hu (Department of Agricultural Biotechnology, Seoul National University) ;
  • Jin, Yong-Cheng (Department of Animal Science, Pusan National University) ;
  • Lee, Sang-Bum (Department of Animal Science, Pusan National University) ;
  • Kang, Han-Suck (Department of Animal Science, Pusan National University) ;
  • Choi, Yun-Jaie (Department of Agricultural Biotechnology, Seoul National University)
  • 홍중산 (천진농학원 동물자원과학과) ;
  • 이홍구 (부산대학교 동물생명자원과학과) ;
  • 이철호 (서울대학교 농생명공학부) ;
  • 김영성 (부산대학교 동물생명자원과학과) ;
  • 이상범 (부산대학교 동물생명자원과학과) ;
  • 강한석 (부산대학교 동물생명자원과학과) ;
  • 최윤재 (서울대학교 농생명공학부)
  • Received : 2011.03.29
  • Accepted : 2011.08.09
  • Published : 2011.08.31

Abstract

This study was conducted to investigate the effects of brown seaweed waste (BSW) fermented with DS-01 microbe on in vitro rumen microbial fermentation. In in vitro trial, three different diets supplemented with 2%, 4%, 6% BSW fermented with DS-01 either for one month or two months was tested at 3 h, 6 h, 9 h, 12 h, and 24 h incubation. The chemical composition (CP, EE, CF, and ash) between brown seaweed waste (BSW) and fermented BSW (FBSW) were not different. The contamination of pathogenic microbes was not detected in FBSW. The pH value tended to be higher with 6% level of supplementation of FBSW for one month than other treatments. The pH at 24 h was significantly higher in FBSW than that of treatments without FBSW (p<0.05). In FBSW for two months, the pH value in 6% FBSW at 3 h in vitro fermentation tended to be higher than 2% or 4% FBSW treatments (p=0.0540), but there were no differences in other fermentation times. Although the concentration of $NH_3$-N of BSW fermented for one month was higher than control at 3 h (p<0.05), the volatile fatty acid values were significantly increased in 4 and 6% FBSW fermented for one month at 6 h incubation (p<0.05). In BSW fermented for two months, the volatile fatty acid values were significantly decreased in 6% treatment at 9 h (p<0.05). As a result of in vitro trial, it was recommended that the 2~4% supplementation level of brown seaweed waste fermented with DS-01 microbe for two months could be utilized for in vivo trial in ruminants.

Keywords

Fermented brown seaweed waste;In vitro;pH;$NH_3$-N

Acknowledgement

Supported by : 부산대학교

References

  1. Ahn, S. J., Kim, Y. S. and Park, W. P. 2004. Storage of waste-brown seaweed and degradation of alginate using microorganism. J. of the Environmental Sciences. 13(3):313-318. https://doi.org/10.5322/JES.2004.13.3.313
  2. Allen, V. G., Pont. K. R., Saker. K. E., Fontenot. J. P., Bagley. C. P., Ivy. R. L., Evans. R. R., Schmidt. R. E., Fike. J. H., Zhang. X., Ayad. J. Y., Brown. C. P., Miller. M. F., Montgomery. J. L., Mahan. J., Wester. D. B. and Melton. C. 2001. Tasco: Influence of a brown seaweed on antioxidants in forages and livestock-A review. J. Anim. Sci. 79(E. Suppl.):E21-E31. https://doi.org/10.2527/jas2001.79E-SupplE21x
  3. AOAC. 1995. Official Methods of Analysis 16th ed. Association of Official Analytical Chemists, Washington, DC.
  4. Back, I. K., Maeng, W. J., Lee, S. H., Lee, H. G., Lee, S. R., Ha, J. K., Lee, S. S. and Hwang, J. H. 2004. Effects of the brown seaweed residues supplementation on in vitro fermentation and milk production and composition of lactating dairy cows. Korean. J. Anim. Sci & Technol. 46(3):373-386. https://doi.org/10.5187/JAST.2004.46.3.373
  5. Bae, W., Kaya, K. N., Hancock, D. D., Call, D. R., Park, Y. H. and Besser, T. E. 2005. Prevalence and antimicrobial resistance of thermophilic Campylobacter spp. from cattle farms in Washington State. Appl Environ Microbiol. 2005 Jan;71(1):169-74. https://doi.org/10.1128/AEM.71.1.169-174.2005
  6. Beresford, N. A., Mayes, R. W., Colgrove, P. M., Barnett, C. L., Bryce, L., Dodd, B. A. and Lamb, C. S. 2000. A comparative assessment of the potential use of alginates and dietary calcium manipulation as countermeasures to reduce the transfer of radiostrontium to the milk of dairy animals. J. Environ. Radioactivity. 51:321-334. https://doi.org/10.1016/S0265-931X(00)00086-2
  7. Beresford, N. A., Mayes, R. W., MacEachem, P. J., Dodd, B. A. and Lamb, C. S. 1999. The effectiveness of Ca-alginate to reduce the transfer of radiostrontium to the goatsmilk. J. Environ. Radioactivity. 44:43-54. https://doi.org/10.1016/S0265-931X(98)00066-6
  8. Chaney, A. L. and Marbach, E. P. 1962. Modified reagents for determination of urea and ammonia. Clim. Biochem. 8: 130-132.
  9. Cho, Y. S., Lee, H. S., Kim, J. M., Ryu, P. D., Park, Y. H., Yoo, H. S. and Lee, M. H. 2003. Comparison of antimicrobial susceptibility of vancomycin resistant enterococci from animals and human. Kor. J. Vet. Publ. Hlth. 27(1):17-29.
  10. Erwin, E. S., Marco, S. J. and Emery, E. M. 1961. Volatile fatty acid analysis of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44:1768-1771. https://doi.org/10.3168/jds.S0022-0302(61)89956-6
  11. Greenwood, U., Hall, F. J., Orpen, C. G. and Paterson, I. W. 1983b. Microbiology of seaweed digestion in Orkney sheep. Proc. Physiol. Soc. 343:121.
  12. Greenwood, U., Orpen, C. G. and Paterson, I. W. 1983a. Digestibility of seaweed in Orkney sheep. Proc. Physiol. Soc. 343:120.
  13. Hur, J., Kim, J. M., Kwon, N. H., Park, K. T., Lim, J. Y., Jung, W. K., Hong, S. K. and Park, Y. H. 2004. Antimicrobial resistance patterns of Listeria species and Staphylococcus aureus isolated from poultry carcasses in Korea. Korea. J. Vet. Res. 44(2):217-224.
  14. Iwamoto, Y., Xu, X., Tamura, T., Oda, T. and Muramatsu, T. 2002. Enzymatically depolymerized alginate oligomers that cause cytotoxic cytokine production in human mononuclear cells. Biosci Biotechnol Biochem. 67(2):258-263.
  15. Keys, A., Grande, F. and Anderson, J. T. 1961. Fibers and pectin in the diet and serum cholesterol concentration in man. Proceeding of the Society of experimental biological medicine. 106:555-558.
  16. Kimura, Y., Watanabe, K. and Okuda, H. 1996. Effect of soluble sodium alginate on cholesterol excretion and glucose tolerance in rats. J. Ethnophar. macology. 54:47-54. https://doi.org/10.1016/0378-8741(96)01449-3
  17. Klinkenberg, G., Lystad, K. Q., Levine, D. W. and Dyrset, N. 2001. Cell release from alginate immobilized Lactococcus lactis ssp. lactisin Chitosan and Alginate Coated Beads. J. Dairy. Sci. 84:1118-1127. https://doi.org/10.3168/jds.S0022-0302(01)74572-9
  18. Kwon, H. J., Park, K. Y., Yoo, H. S., Park, J. Y., Park, Y. H. and Kim, S. J. 2000. Differentiation of Salmonella entericaserotype gallinarum biotype pullorum from biotype gallinarum by analysis of phase 1 flagellin C gene (fliC), J Microbiol Methods. 40(1):33-38, https://doi.org/10.1016/S0167-7012(99)00129-3
  19. Lee, H. G., Hong, Z. S., Li, Z. H., Xu, C. X., Jin, X., Jin, M. G., Lee, H. J., Choi, N. J., Koh, T. S. and Choi, Y. J. 2005. Effect of brown seaweed waste supplementation on lactational performance and endocrine physiology in holstein lactating cows. Korean. J. Anim. Sci & Technol. 47(4):573-582. https://doi.org/10.5187/JAST.2005.47.4.573
  20. Lee, S. H., Kim, H. J., Jo, I. H., Ahn, J. H., Chang, M. B. and Maeng, W. J. 2001. Effects of soluble carbohydrate on ruminal fermentation and microbial growth in continuous culture. Korean. J. Anim. Sci & Technol. 43(5):695-706.
  21. Nishino, T., Fukuda, A., Nagumo, T., Fujihara, M. and Kaji, E. 1999. Inhibition of the generation of thrombin and factor Xa by a fucoidan from the brown seaweed Ecklonia kurome. Thrombosis Research 96:37-49. https://doi.org/10.1016/S0049-3848(99)00060-2
  22. Nishino, T., Yamauchi, T., Horie, M., Nagumo, T. and Suzuki1, H. 2000. Effects of a fucoidan on the activation of plasminogen by u-PA and t-PA. Thrombosis Research 99:623-634. https://doi.org/10.1016/S0049-3848(00)00289-9
  23. Piya, C., Hong, S. H., Choi, Y. J., Hwang, I. H., Lee, S. S. and Ha, J. K. 2001. Effect of Yucca extract on in vitro fermentation by mixed ruminal microorganism. Korean. J. Anim. Sci & Technol. 43(5):707-720.
  24. Rearte, D. H. and Santini, F. J. 1993. Rumen digestion of temperate pasture: effects on milk yield and composition. Page 562 in Proc. XVII Int. Grassl. Congr. N. Z.
  25. Steel, R. G. D. and Torrie, J. H. 1980. Principles and procedures of ststistics. A Biometrical approach (2nd eds). McGraw-Hill, Inc.
  26. Tsuji, K., Oshima, S., Tsuji-Matsusaki, E., Nakamura, A., Inami, T. and Suzuki, S. 1968. Effect of polysaccharides on cholesterol metabolism. Elyougaku Zasshi(in Japanese). 26:113-122.
  27. Tsuji, K., Tsuji, M. E. and Suzuki, S. 1977. Effect of polysaccharides on cholesterol metabolism. IV. Effects of various polysaccharide derivatives, lignin, and synthetic polymers on serum and liver cholesterol levels in rats. Elyougaku Zasshi (in Japanese). 35:227-234.
  28. Van, S. P. J., Robertson, J. B. and Lewis, B. A. 1991. Methods for dietary fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  29. Yamamoto, I., Takahashi, M., Suzuki, T., Seino, H. and Mori, H. 1984. Antitumor effect of seaweeds. IV. Enhancement of antitumor activity by sulfation of a crude fucoidan fraction from Sargassum kjellmanianum. Jpn. J. Exp. Med. 54(4):143-151.
  30. Yonekura, L. and Suzuki, H. 2003. Some polysaccharides improve zinc bioavailability in rats fed a phytic acid-containing diet. Nutrition Research 23:343-355. https://doi.org/10.1016/S0271-5317(02)00538-9
  31. Yoo, H. S., Lee, S. U., Park, K. Y. and Park, Y. H. 1997. Molecular typing and epidemiological survey of prevalence of Clostridium perfringens types by multiplex PCR. J Clin Microbiol. 35 (1):228-32.
  32. Zhuang, C., Itoh, H., Mizuno, T. and Ito, H. 1995. Antitumor active fucoidan from the brown seaweed, umitoranoo (Sargassum thunbergii). Biosci Biotechnol. Biochem. 59(4):563-567. https://doi.org/10.1271/bbb.59.563