A Customer Profile Model for Collaborative Recommendation in e-Commerce

전자상거래에서의 협업 추천을 위한 고객 프로필 모델

  • 이석기 (한양대학교 정보시스템학과) ;
  • 조현 (한국과학기술원 경영대학) ;
  • 천성용 (단국대학교 경영학부)
  • Received : 2011.04.01
  • Accepted : 2011.04.26
  • Published : 2011.05.28


Collaborative recommendation is one of the most widely used methods of automated product recommendation in e-Commerce. For analyzing the customer's preference, traditional explicit ratings are less desirable than implicit ratings because it may impose an additional burden to the customers of e-commerce companies which deals with a number of products. Cardinal scales generally used for representing the preference intensity also ineffective owing to its increasing estimation errors. In this paper, we propose a new way of constructing the ordinal scale-based customer profile for collaborative recommendation. A Web usage mining technique and lexicographic consensus are employed. An experiment shows that the proposed method performs better than existing CF methodologies.


  1. F. Liu and H. J. Lee, "Use of social network information to enhance collaborative filtering performance," Expert Systems with Applications, Vol.37, pp.4772-4778, 2010.
  2. W. D. Cook, "Optimal allocation of proposals to reviewers to facilitate effective ranking," Management Science, Vol.51, No.4, pp.655-661, 2005.
  3. C. Wang and W. A. Wulf, "Towards a framework for security measurement," in: Proc. of National Information Systems Security Conference pp.522-533, 1997.
  4. S. K. Lee, S. H. Kim, and Y. H. Cho, "Collaborative filtering with ordinal scale-based implicit ratings for mobile music recommendations," Information Sciences, Vol.180, No.11, pp.2142-2155, 2009.
  5. 박종학, 조윤호, 김재경, "사회연결망: 신규고객 추천문제의 새로운 접근법", 지능정보연구, 제15권, 제1호, pp.123-139, 2009.
  6. 김귀정, 김봉한, 한정수, "복합지식 기반 개인 맞춤형 지능화 추천 시스템", 한국콘텐츠학회논문지, 제10권, 제8호, pp.26-31, 2010.
  7. 여운동, 박현우, 권영일, 박영욱, "연구논문 추천 시스템의 전자도서관 적용방안", 한국콘텐츠학회논문지, 제10권, 제11호, pp.10-19, 2010.
  8. 정귀임, 박상성, 신영근, 장동식, "역전파 신경망을 이요한 개인 맞춤형 상품 추천 시스템 구축", 한국콘텐츠학회논문지, 제7권, 제12호, pp.292-302, 2007.
  9. T. Kamishima, "Nantonac collaborative filtering: recommendation based on order response," in: Proc. of the Ninth International Conference on Knowledge Discovery and Data Mining, pp.583-588, 2003.
  10. T. Joachims, "Optimizing search engine using click through data," in: Proc. of the Eighth International Conference on Knowledge Discovery and Data Mining, pp.133-142, 2002.
  11. C. Y. Kim, J. K. Lee, Y. H. Cho, and D. H. Kim, "VISCORS: a visual-content recommender for the mobile Web," IEEE Intelligent Systems Vol.19, No.3, pp.32-38, 2004.
  12. Y. H.Cho and J. K. Kim, "Application of Web usage mining and product taxonomy to collaborative recommendations in e-commerce," Expert Systems with Applications, Vol.26, No.2, pp.236-246, 2004.
  13. M. Condorcet, "Essai sur L'Application de L'Analyse a la Probabilite des Decisions Rendues," a La Pluralite des Voix, Paris, 1785.
  14. J. Borda, "Memoire sur les elections au scrutin," Histoire de l'academie royale de science, Paris, 1981.