DOI QR코드

DOI QR Code

ON LEFT AND RIGHT BROWDER OPERATORS

  • Zivkovic-Zlatanovic, Snezana C. ;
  • Djordjevic, Dragan S. ;
  • Harte, Robin E.
  • Received : 2010.06.23
  • Published : 2011.09.01

Abstract

We discuss the perturbation theory of "left" and "right" Browder operators, which come somewhere between Browder operators and semi Browder operators.

Keywords

semi Browder;Riesz perturbations

References

  1. J. J. Buoni, R. E. Harte, and T. Wickstead, Upper and lower Fredholm spectra. I, Proc. Amer. Math. Soc. 66 (1977), no. 2, 309-314.
  2. B. P. Duggal, Perturbations of operators satisfying a local growth condition, Extracta Math. 23 (2008), no. 1, 29-42.
  3. R.E. Harte, Spectral mapping theorems, Proc. Royal Irish Acad. Sect. A 72 (1972), 89-107.
  4. R.E. Harte, Invertibility and Singularity, Dekker 1988.
  5. R.E. Harte, On Kato non-singularity, Studia Math. 117 (1996), no. 2, 107-114. https://doi.org/10.4064/sm-117-2-107-114
  6. R. E. Harte and A.-H. Kim, Weyl's theorem, tensor products and multiplication operators, J. Math. Anal. Appl. 336 (2007), no. 2, 1124-1131. https://doi.org/10.1016/j.jmaa.2007.03.053
  7. R. E. Harte and W. Y. Lee, Another note on Weyl's theorem, Trans. Amer. Math. Soc. 349 (1997), no. 5, 2115-2124. https://doi.org/10.1090/S0002-9947-97-01881-3
  8. R. E. Harte and A. W. Wickstead, Boundaries, hulls and spectral mapping theorems, Proc. Roy. Irish Acad. Sect. A 81 (1981), no. 2, 201-208.
  9. H. Heuser, Functional Analysis, Wiley Interscience, Chichester, 1982.
  10. J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), no. 3, 367-381. https://doi.org/10.1017/S0017089500031803
  11. V. Muller, Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, Birkhauser 2007.
  12. V. Rakocevic, Essential spectrum in Banach algebras, Doctoral dissertation, Nis 1983.
  13. V. Rakocevic, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J. 28 (1986), no. 2, 193-198. https://doi.org/10.1017/S0017089500006509
  14. V. Rakocevic, Generalized spectrum and commuting compact perturbations, Proc. Edinburgh Math. Soc. (2) 36 (1993), no. 2, 197-209. https://doi.org/10.1017/S0013091500018332
  15. V. Rakocevic, Semi Browder operators and perturbations, Studia Math. 122 (1996), 131-137.
  16. M. Schechter and R. Whitley, Best Fredholm perturbation theorems, Studia Math., 90 (1988), no. 3, 175-190. https://doi.org/10.4064/sm-90-3-175-190
  17. S. Zivkovic, Semi-Fredholm operators and perturbations, Inst. Math. (Beograd) (N.S.) 61(75) (1997), 73-89.

Cited by

  1. Polynomially Riesz perturbations vol.408, pp.2, 2013, https://doi.org/10.1016/j.jmaa.2013.06.010
  2. On Closed Upper and Lower Semi-Browder Operators vol.12, pp.3, 2015, https://doi.org/10.1007/s00009-014-0457-3
  3. Left-right Browder linear relations and Riesz perturbations vol.37, pp.5, 2017, https://doi.org/10.1016/S0252-9602(17)30083-8
  4. Left–Right Fredholm and Weyl Spectra of the Sum of Two Bounded Operators and Applications vol.11, pp.3, 2014, https://doi.org/10.1007/s00009-013-0372-z
  5. Stability of the S-left and S-right essential spectra of a linear operator vol.34, pp.6, 2014, https://doi.org/10.1016/S0252-9602(14)60135-1
  6. Ruston, Riesz and perturbation classes vol.389, pp.2, 2012, https://doi.org/10.1016/j.jmaa.2011.12.030
  7. Perturbations Results for Some Classes Related to Browder Linear Relations and Applications 2017, https://doi.org/10.1007/s11785-017-0727-8
  8. Spectral Properties Involving Generalized Weakly Demicompact Operators vol.16, pp.2, 2019, https://doi.org/10.1007/s00009-019-1320-3