DOI QR코드

DOI QR Code

SPHERICAL HALL ALGEBRAS OF CURVES AND HARDER-NARASIMHAN STRATAS

  • Schiffmann, Olivier
  • Received : 2010.02.08
  • Published : 2011.09.01

Abstract

We show that the characteristic function $1S_{\underline{\alpha}}$ of any Harder-Narasimhan strata $S{\underline{\alpha}}\;{\subset}\;Coh_X^{\alpha}$ belongs to the spherical Hall algebra $H_X^{sph}$ of a smooth projective curve X (defined over a finite field $\mathbb{F}_q$). We prove a similar result in the geometric setting: the intersection cohomology complex IC(${\underline{S}_{\underline{\alpha}}$) of any Harder-Narasimhan strata ${\underline{S}}{\underline{\alpha}}\;{\subset}\;{\underline{Coh}}_X^{\underline{\alpha}}$ belongs to the category $Q_X$ of spherical Eisenstein sheaves of X. We show by a simple example how a complete description of all spherical Eisenstein sheaves would necessarily involve the Brill-Noether stratas of ${\underline{Coh}}_X^{\underline{\alpha}}$.

Keywords

Hall algebras;Harder-Narasimhan stratas;Eisenstein sheaves

References

  1. E. Arbarello, M. Cornalba, P. Griffiths, and J. Harris, Geometry of algebraic curves. Volume I, Grundlehren Math. Wiss. 267, Springer-Verlag, 1985.
  2. P. Baumann and C. Kassel, The Hall algebra of the category of coherent sheaves on the projective line, J. Reine Angew. Math. 533 (2001), 207-233.
  3. A. Beilinson, I. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981), 5-171, Asterisque, 100, Soc. Math. France, Paris, 1982.
  4. I. Burban and O. Schiffmann, On the Hall algebra of an elliptic curve, I., preprint math.AG/0505148, to appear in Duke Math. Jour. https://doi.org/10.1215/00127094-1593263
  5. G. Harder and M. S. Narasimhan, On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann. 212 (1974/75), 215-248. https://doi.org/10.1007/BF01357141
  6. M. Kapranov, Eisenstein series and quantum affine algebras, Algebraic geometry 7, J. Math. Sci. (New York) 84 (1997), no. 5, 1311-1360. https://doi.org/10.1007/BF02399194
  7. M. Kashiwara and Y. Saito, Geometric construction of crystal bases, Duke Math. J. 89 (1997), no. 1, 9-36. https://doi.org/10.1215/S0012-7094-97-08902-X
  8. A. King, A survey of Brill-Noether theory on algebraic curves, preprint (1993), available at http://www.maths.bath.ac.uk/ masadk/papers/.
  9. G. Laumon, Faisceaux automorphes lies aux series d'Eisenstein, Automorphic forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), 227-281, Perspect. Math., 10, Academic Press, Boston, MA, 1990.
  10. G. Lusztig, Introduction to Quantum Groups, Birkhauser, 1994.
  11. H. Nakajima, Quiver varieties and Kac-Moody algebras, Duke Math. J. 91 (1998), no. 3, 515-560. https://doi.org/10.1215/S0012-7094-98-09120-7
  12. M. Reineke, The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli, Invent. Math. 152 (2003), no. 2, 349-368. https://doi.org/10.1007/s00222-002-0273-4
  13. C. Ringel, Hall algebras and quantum groups, Invent. Math. 101 (1990), no. 3, 583-591. https://doi.org/10.1007/BF01231516
  14. O. Schiffmann, Noncommutative projective curves and quantum loop algebras, Duke Math. J. 121 (2004), no. 1, 113-168. https://doi.org/10.1215/S0012-7094-04-12114-1
  15. O. Schiffmann, Lectures on Hall algebras, preprint arXiv:math/0611617 (2006), to appear.
  16. O. Schiffmann, Canonical bases and moduli spaces of sheaves on curves, Invent. Math. 165 (2006), no. 3, 453-524. https://doi.org/10.1007/s00222-005-0495-3
  17. O. Schiffmann, On the Hall algebra of an elliptic curve, II, preprint arXiv:math/0508553 (2005).
  18. O. Schiffmann and E. Vasserot, The elliptic Hall algebra, Cherednick Hecke algebras and Macdonald polynomials, Compos. Math. 147 (2011), no. 1, 188-234. https://doi.org/10.1112/S0010437X10004872
  19. O. Schiffmann and E. Vasserot, Hall algebras of curves, quiver varieties and Langlands duality, arXiv:1009.0678 (2010).
  20. S. Shatz, The decomposition and specialization of algebraic families of vector bundles, Compositio Math. 35 (1977), no. 2, 163-187.
  21. M. Varagnolo and E. Vasserot, On the decomposition matrices of the quantized Schur algebra, Duke Math. J. 100 (1999), no. 2, 267-297. https://doi.org/10.1215/S0012-7094-99-10010-X

Cited by

  1. Indecomposable vector bundles and stable Higgs bundles over smooth projective curves 2016, https://doi.org/10.4007/annals.2016.183.1.6
  2. A new involution for quantum loop algebras vol.480, 2017, https://doi.org/10.1016/j.jalgebra.2017.03.012
  3. Elliptic Springer theory vol.151, pp.08, 2015, https://doi.org/10.1112/S0010437X14008021